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AFIT/GM/ENP/98M-12 

Abstract 

The 45th Weather Squadron (WS) is responsible for the protection of billions of 

dollars worth of Air Force and NASA equipment from weather hazards. They produce a 

seven day planning forecast as one tool to support the space launch community. 

Improving this forecast can potentially save millions of dollars of government funds. 

This research focuses on the feasibility of improving the day-two thunderstorm 

forecast by applying Meso-Eta numerical forecasts to the Neumann-Pfeffer Thunderstorm 

Index (NPTI). The NPTI is currently used by the 45th WS for same-day thunderstorm 

probability forecasting utilizing the morning radiosonde as input. The perfect prognosis 

assumption was used when assessing the value of this technique. 

NPTI thunderstorm probabilities were calculated using input variables extracted 

from the day-two Meso-Eta . The NPTI output was verified against coincident 

thunderstorm observations taken at Cape Canaveral Air Station. Accuracy and bias 

statistics were used to calculate a forecasting skill score versus persistence. Statistically 

significant positive skill scores were produced, indicating that the proposed method is a 

potentially useful forecasting tool for day-two thunderstorm probability forecasting. 

The skill of the same-day NPTI was also compared against persistence forecasts 

using a 20 year climatological data set. This comparison shows that the NPTI has 

marginal skill compared to persistence, particularly during northeast wind regimes. 

xn 



I. Introduction 

1.1 Overview 

Since the advent of the computer, numerical models have been used to forecast 

the synoptic scale weather pattern. Improving the value of the output to forecasters and 

their customers is a major goal in the field of meteorological research. This research 

project involved analyzing possible improvements to operational forecasting of 

thunderstorms 24 hours in advance using Meso-Eta model output at Cape Canaveral Air 

Station (CCAS). It concentrated on applying the Neumann-Pfeffer Thunderstorm Index 

(NPTI) with Meso-Eta model output to analyze the value of using this combination to 

predict thunderstorms for the 24 hour forecast of the 45th Weather Squadron's seven day 

outlook (Neumann 1971). If the NPTI and Meso-Eta outperform persistence, they may 

be employed operationally by forecasters of the 45th Weather Squadron. The squadron is 

located at Cape Canaveral Air Station and Patrick Air Force Base (PAFB), Florida, and 

supports the United States Air Force (US AF) and the National Aeronautics and Space 

Administration (NASA) space launch programs (Roeder et al. 1997). See Figure 1 for the 

geographic location. Their forecasters are the primary customers of the results presented 

by this research. The hypothesis tested was that the Meso-Eta model has the ability to 

provide forecasted soundings which are comparable enough to the actual atmosphere for 

the NPTI to have a positive skill score versus persistence, thereby making it a valuable 

tool to forecasters. 



Cape Canaveral 

Figure 1. Map of Florida showing the location of Cape Canaveral. The general 
geographic features are shown with Cape Canaveral, the Air Force installations, 
and the major central Florida cities indicated. 



1.2 Background 

1.2.1 Usefulness to the Air Force. Cape Canaveral is on the central east coast of 

Florida and is home to the USAF's Cape Canaveral Air Station and NASA's Kennedy 

Space Center (KSC). The 45th Weather Squadron produces a seven day weather outlook 

that is used by these organizations for planning purposes. They also provide nowcasts in 

support of all space launch and shuttle landing missions. The 45th Weather Squadron is 

responsible for the protection of $7 billion worth of government property from weather 

damage. This number does not include the enormous cost of the space vehicles or the 

close to $1 million the government must spend to scrub a space shuttle launch. With over 

30% of all space launch attempts being scrubbed or postponed due to weather, a better 

forecast would save taxpayer money (Roeder et al. 1997). The objective of this research 

was to improve the thunderstorm forecasting for day two of the seven day outlook by 

applying the NPTI with Meso-Eta model output. Improving their ability to forecast 

convective storms and lightning which hinder space launch missions will enable the 

operators to be primed for significant weather during the launch window. Due to the high 

cost of launching crafts into orbit it is very valuable for the space launch community to 

select the day with the highest probability for success. 

1.2.2 Thunderstorm Generation. The major weather events during the summer 

months at KSC are thunderstorms. Due to its location in the lower subtropics with warm 

and moist conditions, Florida has more thunderstorms overall than anywhere else in the 

United States (Cetola 1997). A convective storm requires three main properties are 

present for formation: moisture, instability, and lift (Bluestein 1993). The complex 



relationship between the synoptic patterns, mesoscale phenomena like the sea and river 

breezes, and the warm, moist atmosphere at Cape Canaveral provide the perfect location 

for convection to occur (Cetola 1997). The abundance of thunderstorms creates quite a 

challenge for forecasters to provide adequate predictions of days that meet the stringent 

space launch and shuttle landing criteria. 

1.2.3 The NPTI. Forecasters supporting the space mission are currently using the 

Neumann-Pfeffer Thunderstorm Index to analyze daily morning soundings to predict the 

probability of thunderstorm occurrence (Neumann 1971). This index was developed 

from 1968 to 1971 through a statistical analysis of data over Cape Canaveral from 1951 

to 1969. A statistical regression was performed to obtain an equation for the probability 

of thunderstorms with inputs to the index of regional climatology, the wind velocity at 

850 mb and 500 mb, the relative humidity (RH) in the 800-mb to 600-mb layer, and the 

Showalter Stability Index (Neumann 1970). The Showalter Stability Index is an indicator 

of the static stability present in the atmosphere over one location, and is useful for 

predicting storms in regions with deep moist layers where convection is likely to occur 

(Bluestein 1993). The complete NPTI outputs a probability of convective storms and a 

"yes" or "no" forecast of thunderstorm occurrence. The NPTI is used to predict daily 

occurrence of thunderstorms utilizing the morning's radiosonde sounding as input, but 

applying model generated soundings from the Meso-Eta to the NPTI had never been 

attempted. That is why this research tested the validity of applying the index with Meso- 

Eta model output for the 24 hour forecasted sounding of the 1500 UTC model run. 



1.2.4 The Meso-Eta Model. The Meso-Eta is a numerical model that is run 

operationally by the Mesoscale Modeling Branch of the National Centers for 

Environmental Prediction's (NCEP) Environmental Modeling Center. This model is run 

at a 29-km horizontal resolution. The output is provided in the original 29-km format or 

the Advanced Weather Interactive Processing System (AWIPS) 40-km resolution, both of 

which are transmitted in GPJdded Binary (GPJB) format (NASA CR-205409 1997). The 

model output data necessary to perform a NPTI analysis is provided in both model output 

formats. There are 50 eta surfaces in the vertical, which are adjusted pressure surfaces 

with step-mountain topography. To obtain AWIPS format output the eta surfaces are 

then interpolated by NCEP to constant pressure surfaces that extend from 1000 mb to 50 

mb in 25 mb increments plus special surface, 2-m, and 10-m levels (NASA CR-205409 

1997). Other models may also provide valuable data for predicting thunderstorms, but 

the Meso-Eta's high resolution is the primary reason it was chosen to test the NPTI's 

forecasting ability. T. L. Black's 1994 paper, "The NewNMC Mesoscale Eta Model: 

Description and Forecast Examples" from Weather and Forecasting, provides more 

information on the eta vertical coordinate and the Meso-Eta model. 

1.3 Research Objectives 

The Neumann-Pfeffer Thunderstorm Index is the current tool used by the 45th 

Weather Squadron for thunderstorm forecasting. It was specially designed for use at the 

Cape Canaveral launch facilities using multiple regression techniques (Neumann 1971). 



That is why this research was restricted to using only the NPTI to get probabilities for 

convection, and not other prediction techniques which utilize stability indices. 

The weather squadron has certain criteria that must be met for the warnings and 

advisories it issues. They include thunderstorms within 10 nautical miles (n mi) of 

PAFB, lightning within 5 n mi of PAFB, KSC, or CCAS, lighting within 25 n mi of 

CCAS, and many wind, rain, hail, funnel cloud, and temperature warnings all of which 

can be associated with severe thunderstorms (Roeder et al. 1997). These are important 

criteria to remember when trying to predict thunderstorms near Cape Canaveral. 

As discussed earlier, other numerical models may prove valuable in predicting 

thunderstorms. Forecasters have the ability to choose from several different models in 

trying to provide an accurate prediction. The Air Force, Navy, and the NCEP all run 

models which try to predict the weather. Some of these models are grid point numerical 

models like the Eta, others are spectral models that use spherical harmonics (Haitiner and 

Williams 1980). This research used the high resolution grid point model of the Meso-Eta 

to provide a determination of the ability of this numerical model and the NPTI to predict 

convective storms over the Space Coast. Model output necessary to analyze the NPTI's 

prediction abilities was collected for August and September, 1997. This period is the 

later half of the primary convective season in eastern Florida, which extends from May 

through September (Neumann 1968). The sample size was adequate for a preliminary 

study to examine the ability of the Meso-Eta model to predict thunderstorms 24 hours in 

advance using the NPTI; however, a larger sample size will provide more information for 

the statistical analysis. After the NPTI's thunderstorm occurrence predictions were 



obtained, they were statistically compared with the actual occurrence of thunderstorms at 

the station, or in the vicinity of the station, and a case study was performed to look for 

weather phenomena that may contribute to successful or unsuccessful forecasts. This 

research will conclude with the model supported NPTFs potential operational value to the 

45th Weather Squadron's forecasters. 

1.4 Research Approach 

This research project used the model output at the levels described by Neumann to 

calculate the NPTI (1970). The perfect prog, or "perfect prognosis", assumption was 

necessary to directly input the model data into the algorithm. This assumption uses the 

variables calculated by the numerical model and assumes that they were perfectly forecast 

(Wilks 1995). To use the Meso-Eta variable in the algorithm a NCEP program was used 

which enables the user to extract data from the model output. Then, FORTRAN 77 code 

was written which would make the data usable in the NPTI algorithm. This code 

calculated the Showalter Stability Index and the NPTI using the model data as input. The 

output from the NPTI included a ten by ten grid of probability of thunderstorm 

occurrence and a yes or no thunderstorm forecast. This forecast was verified ^against the 

actual observations taken at CCAS and PAFB for the same time frame. A statistical 

analysis was conducted to confirm if the model is able to skillfully forecast day-two 

thunderstorm occurrence. The statistical analysis consisted of 2x2 contingency tables 

with accuracy and bias measures (Wilks 1995). A skill score was used to test the method 

against persistence (Wilks 1995). Persistence is a forecasting technique that uses today's 



weather as the forecast for tomorrow. To determine the dependence or independence 

between the forecasts and observations in the contingency tables a %2 test was performed 

(Everitt 1992). The case study involved looking at the relationship between the dynamic 

weather events that day and forecasting ability. These case studies will add to the 

forecaster's ability to utilize this prediction tool. To increase the value of the case study 

the NPTI was run on approximately 20 years of upper air soundings taken at Cape 

Canaveral and scrutinized for the presence of any predictor or general trends in the 

algorithm which may make the NPTI less accurate under certain situations. This 

information was then used as a comparison tool in the case study of the NPTI output. 

The two case studies involved checking the synoptic and mesoscale events present in the 

model for any indication into why the NPTI incorrectly forecast the thunderstorm 

prediction for that day. A final comparison reviewed the incorrectly forecasted days, 

September 22, 23, and 24, for similar predictors for the missed forecast that may later be 

employed in interpreting the NPTI's forecast. 

The results will show if the current NPTI applied to forecasted soundings from 

model output of the Meso-Eta models are accurate enough in predicting thunderstorms to 

be a useful tool for operational forecasters. A statistically significant skill in predicting 

thunderstorms means that forecasters potentially have another tool to use in their endless 

struggle to try to predict the chaotic behavior of Earth's atmosphere. An inconclusive 

result may indicate that this model and index do not provide the necessary accuracy to be 

useful indicators; however, other models and other indices may prove to be more useful 

in the future. On the other hand, inconclusive results may also indicate that a larger 
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sample size is need to obtain a valuable conclusion. The case study results provide more 

information into the biases and true forecasting ability of this combination. Whatever the 

conclusion, the 45th Weather Squadron has a first step in the direction of using numerical 

models as automated decision aides in forecasting the thunderstorms that plague warm 

season space launch. 

1.5 Summary of Results 

The NPTI applied with Meso-Eta output was tested for its ability as a forecasting 

technique for day two of the seven day planning forecast. To objectively verify its 

performance, a forecasting skill score versus persistence was developed. The findings of 

this research showed that the NPTI can be used with Meso-Eta output to produce a 

forecast which is able to outperform persistence. 

The results from the NPTI algorithm indicated that it was able to predict a 

majority of the thunderstorms during the test period. Of the 32 day sample tested in this 

thesis, only five days were improperly forecast. Only one day was underforecast, which 

is defined as a thunderstorm occurrence that was not forecast; conversely, four days were 

overforecast. Even with the small sample size, the observations were found to be 

dependent on the forecasts through the %2 test. The statistics showed an accuracy level 

which exceeded the accuracy of persistence in all the measures except the probability of 

detection. Table 1 shows the accuracy and bias statistics along with their comparative 

skill score shown as a percent above or below the forecasting ability of the reference 

forecasting method of persistence. The hit rate (HR) describes the ability of the NPTI to 



predict correct yes and no thunderstorm forecasts. The skill score of HR shows that 

overall the NPTI has the ability to provide an adequate forecast. The NPTI also provides 

a far better false-alarm rate (FAR) than persistence. The FAR, coupled with the good 

inverse false-alarm rate (FARN), show that the NPTI makes a lower percentage of 

mistakes than persistence. It is clearly visible, however, that the NPTI algorithm is much 

better at predicting days without thunderstorms than persistence. This can be seen 

through the huge difference in skill scores for threat score (TS) and inverse threat score 

(TSN) which is the ability of the algorithm to forecast clear days. The lower skill score 

of TS shows that it has some problems forecasting days with thunderstorm occurrence. 

The very low skill score for the probability of detection (POD) and the extremely high 

skill score for the inverse probability of detection (PODN) also indicate this. The NPTI 

also has a noticeable bias to underforecast. This could be a factor of the sample size or of 

the NPTI's algorithm not being designed for use with model output. Whatever the case, it 

can be seen that there is some potential in this method as a forecasting tool and further 

study into its ability is recommended. 

Table 1. Summary of Statistical Results for NPTI with Meso-Eta inputs  

HR      TS        TSN     POD    POD     FAR    FAR      Bias 
 (%)      (%)      (%)      (%)      N(%)    (%)      N(%)  
NPTI 84.38   79.17   61.54   82.61    88.89    5 33.33     0.8696 

Skill Score vs.    13.37   3.43     26.58   -56.5    53.98    61.66    12.22    N/A 
persistence   

10 



II Theoretical and Experimental Background 

2.1 Overview 

Forecasting thunderstorms is a subject that has long been studied by 

meteorologists. This chapter will review the methods used by previous research into this 

phenomenon and theoretical concepts that apply to this project. The subjects addressed 

are thunderstorm generation and case studies of previous research, prediction techniques, 

numerical modeling, and the statistical methods applied to this research. 

2.2 Thunderstorm Generation and Case Studies on Florida's East Coast 

Thunderstorm generation involves the combination of synoptic scale and 

mesoscale features in a region that is primed for convection. All convective storms 

follow the basic principle that warmer air rises. The synoptic and mesoscale features that 

help to generate convection all involve the increasing of moisture, the instability of the 

region, and the forcing mechanisms associated with upward vertical motion. On 

Florida's East Coast, many of these factors exist on a very regular basis during the 

summer months. The most difficult indicator to successfully forecast is the forcing 

mechanism, which can include upper level flow, jetstreak circulations, and any type of 

frontal system. 

This section focuses on some of the previous research work performed in the area 

of thunderstorm generation over the east coast of Florida to illustrate how flow regimes 

and breeze circulations affect thunderstorm generation. The interaction of the land/sea 
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interface creates thermally direct circulations known as the sea, river, and lake breezes 

that exist over this part of Florida and are an important forcing mechanism for 

thunderstorms. The other important phenomenon is the flow regime over this coastal 

location. The general direction of the low level wind field indicates the intensity and 

ability of convection to occur. 

2.2.1 Sea Breeze Studies. The sea breeze interaction with the synoptic scale 

pattern and air over the landmass helps to induce convective storms. The low level 

convergence created by the sea breeze was found to occur at just the right time to 

coincide with the onset of afternoon convection (Byer and Rodebush 1948). This process 

of sea breeze dynamics was later numerically modeled three-dimensionaHy by Pielke 

(1974). This gave great insight into the features of the sea breeze circulation and the 

associated convergence. Recent work has been conducted on the climatology of the sea 

breeze over Cape Canaveral (Cetola 1997). This particular work adds knowledge of this 

forcing mechanism for the Cape Canaveral region. Cetola's research found that an 

onshore sea breeze was likely for any day with large scale flow that was not out of the 

northeast. It also found that river breezes tended to occur only when the large scale flow 

was weak. Convective storms occurred on 53 percent of days with a sea breeze, and were 

most common for days when the synoptic flow was from the southwest. It is important to 

note this when relating thunderstorm generation to flow regimes. Another important 

factor is the location of the convergence-generated convection with respect to the sea 

breeze front. In general, convergence occurred along the leading edge of the penetration 

of the sea breeze; however, a trailing convergence line was also found to exist behind the 

12 



sea breeze front under special situations.   This trailing convergence zone is generated 

because the shape of Cape Canaveral induces northwesterly and southwesterly sea 

breezes which converge along an east-west running line instead of north-south like the 

sea breeze frontal convergence zone. This phenomenon was only noticeable on days with 

weak large scale flow (Cetola 1997). This knowledge will help to better predict the time 

and location of convergence and the duration of the convective outbreak. 

2.2.2 Flow Regime Research. The direction of the large scale flow is important 

when trying to determine the potential for thunderstorm occurrence.    One study 

performed for Cape Canaveral on this subject was done by Bauman, Kaplan, and 

Businger (1997) to help nowcast for easterly flow regimes. Using a sample data set of 

four days during the Convection and Precipitation/Electrification Experiment conducted 

in July and August of 1991, they were able to draw some interesting conclusions about 

the effects of different forcing mechanisms during easterly flow over Cape Canaveral 

(Bauman et al. 1997). It is especially difficult to forecast convective storms during an 

easterly flow regime since they can produce days with weather that varies from clear 

skies to organized thunderstorms. Generally onshore flow (easterly) creates less intense 

convection than the offshore flow because of the strength of convergence zones. Three 

types of days were classified for the easterly flow regime. They were the "active" days 

with weak synoptic scale forcing that resulted in strong sea breeze forcing along the 

convergence zones, the "passive" days with little convection which was generated by the 

existence of the sea breeze front with the synoptic pattern changing, and the "suppressed" 

days with stable lapse rates and low moisture which hindered convection. The 

13 



southwesterly flow contained a deep layer of moisture and accounted for nearly 66 

percent of all lightning strikes at CCAS during this experiment. This research showed 

that not only did the low level flow regime matter to thunderstorm generation, but the 

synoptic scale pattern was also important. It found that the transverse circulations around 

the left entrance and exit regions of a jetstreak which create upward and downward 

vertical motion respectively aided in the convection (Bauman et al. 1997). 

2.3 NPTI Prediction Technique 

The more automated prediction techniques try to incorporate the most important 

factors involved in the process of thunderstorm generation. Some of these factors are 

used in the calculation of the NPTI. The 800-mb to 600-mb layer average relative 

humidity is a measure of the moisture above the marine layer and is an indicator of the 

level of static stability. The Showalter Stability Index is a good measure of the static 

stability present above the extremely moist marine layer. This is because the index uses 

the location of the lifted condensation level above 850 mb to calculate the parcel 

temperature at 500 mb if the parcel were lifted moist adiabatically. The 850-mb wind 

direction and speed indicate the flow regime that exists on the synoptic scale in the lower 

levels. This will show the general position of high and low pressure regions in relation to 

CCAS. The 500-mb wind shows the same results for the upper levels of the atmosphere. 

Finally, the climatology of the region describes an historical percent chance of 

thunderstorms during the summer season. 

14 



The index was created by Neumann in 1971 using a multiple regression technique 

that took into account nonlinear interactions between the variables. Data was used from 

Cape Canaveral soundings for the 13 years between 1957 and 1969 to obtain the resulting 

regression equations (Neumann 1971). A systematic study of over 250 variables 

including the winds, temperature, relative humidity, derived quantities like thickness, 

shear, layer means, and stability indexes, and climatology was conducted to determine the 

correlation between these factors and the occurrence of thunderstorms. The results 

included nine variables that had a large enough correlation to thunderstorm occurrence to 

investigate further. Those nine variables included the components of the 850-mb and 

500-mb winds, the 800-mb to 600-mb mean relative humidity, the Showalter stability 

index, the day number, the 900-mb temperature and the 1000-mb to 850-mb thickness. 

Of these nine variables, all but the last two were included in the final probability 

equation. During the study it was discovered that the constants of the regression to the 

probability equation were dependent on the month of the year. Therefore, separate 

constants were calculated for the five warm season months, May through September. 

The final probability equation (Eq. 1) ended up being a linear combination of the five 

main factors: 

P = C\ + C2 • f(X\) + C3 • f(X2) + CA ■ f(X3) + C5 ■ f(X4) + C6 ■ f(X5)     (1) 
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where, Cn, are the constants and: 

XI = 850-mb wind in knots 

X2 = 500-mb wind in knots 

X3 = Mean relative humidity in the 800-mb to 600-mb layer 

X4 = Showalter stability index 

X5 = Day number 

are the variables in the functions. The functions are regressions of the nonlinear 

dependence of each of the variables. The first function (Eq. 2) is the relationship of the 

winds at both 500 mb and 850 mb. 

f(X) = Al + A2-u + A3-v + A4-U-V + A5-U2 +A6-v2 +A7-U3 

+ A8-U2 -V + A9-U-V2 +A1Q-V3 (2) 

where the constants, An, are different regression constants than those from the overall 

probability equation. The second function (Eq. 3) provides similar calculations for the 

mean layer relative humidity again using different regression constants: 

f(X3) = B\ + B2-X3 + B3-X32+B4-X33. (3) 

The last two equations (Eq.4) are the Showalter stability index regression and the day 

number climatology regression. Both of these regressions resulted in quadratic equations 

with different constants: 

f(X) = Dl + D2-X + D3-X2. (4) 

16 



Where X is either X4 or X5 and the constants are varied depending upon the regression 

factor and the month. The final result was six simple equations that could use the data 

from the mornings sounding to predict a probability of thunderstorms (Neumann 1971). 

2.4 Numerical Modeling 

NCEP's Meso-Eta model was developed during the early 1990's from the lower 

resolution Eta model which has been operational at NCEP since the mid-1980's. The 

model includes dynamical and physical aspects that calculate the synoptic and mesoscale 

features of the weather over its area of operation. The forecasting ability of the model 

was reviewed by the Applied Meteorology Unit of the 45th Weather Squadron to test its 

functionality in forecasting weather phenomena at CCAS and KSC (NASA CR-205409 

1997). Through their research, the biases and inaccuracies of the model output can be 

accounted for during the analysis process of the NPTI's performance using Meso-Eta 

model output. 

2.4.1 Overview of the Meso-Eta Model. The Meso-Eta model derives its name 

from the high resolution of the grid and the vertical coordinate used in the model. The eta 

coordinate (Eq. 5) is an adjusted pressure surface designed to remain relatively 

horizontal, even in rough terrain. The surface is the level where eta 

Pref(Zsfc) - p, 
77 = 

p-pt 

\psfc-ptj Pref(0) - pi 
(5) 

is constant. In this equation/? is the pressure, pf is the pressure at the top of the domain, 

psfc is the surface pressure with zsfc being the height of the lower boundary, and pref is 
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the pressure at a reference state which is a function of height above sea level. There are 

50 vertical levels present in the model with increased resolution near the surface, which 

gradually reduces with height. An exception exists in the tropopause region, which has a 

bit greater resolution for better location of the boundary (Black 1994). Most of the 

prognostic variables are carried at the middle of each layer and calculated using the 

defined variables on each surface (Black 1994). The 29-km horizontal resolution allows 

the model to identify some mesoscale patterns. However, it is important to note that at 

least four grid points and usually six are required to accurately represent a wave in the 

model due to aliasing errors (Haltner and Williams 1980). The result of this fact is that 

the shortest wave accurately resolvable by the model is between 90 km and 150 km. The 

model uses a semi-staggered Arakawa E grid with different mass and velocity positions 

(Black 1994). In Figure 2, the H represents a mass point and the V represents a velocity 

point with d being the distance between adjacent H or V points. The value of d defined to 

be the 29-km model resolution. 

Figure 2. Arakawa Semi-staggered E grid. 

To accommodate for rough terrain the model uses a method called step-mountain 

topography which finds an average level for the terrain over each horizontal grid space 

(Black 1994). The domain that is covered by this model includes all of the contiguous 
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United States as well as large portions of Canada and Central America on a tangential 

Lambert conformal grid mapping with the tangent line intersecting at 25N and the true 

meridian at 95 W (Dey 1996). The AWIPS version of the model output was used in this 

research. NCEP interpolates the original 29 km output to a 40 km grid for easier 

dissemination in GRIB format (Black 1994). The model is run twice daily at NCEP with 

the initialization valid at the 0300 UTC and 1500 UTC with a six hour data ingestion 

around the initialization time. 

Temperature, specific humidity, horizontal components of the wind, surface 

pressure, and turbulent kinetic energy are the major variables calculated by the model 

(Black 1994). To begin this procedure the model is initialized three hours prior to the 

model run by interpolating data from the spectral Aviation (AVN) model to the Meso-Eta 

horizontal and vertical grids which is combined with all the available data from the 

Global Assimilation System. This "first guess" undergoes a multi-variate Optimum 

Interpolation analysis to calculate the initial variables for the model run. This second step 

is repeated an hour and half later to update for new information; then the model is run. 

One of the problems with the initialization of the model that must be remembered when 

using the Meso-Eta is the need for a "run-up" time for the cloud model. This part of the 

model is not initialized using cloud water or ice; therefore, it requires time to reach 

saturation before precipitation will occur (Staudenmaier 1996b). This means that some 

physical effects are not fully developed in the early forecast hours of the model output. 

The model includes some of the dynamics and physics that create the observed 

weather. They involve the use of the equations of motion, the continuity equation, and 
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others that take into account vertical motion and water and ice conservation. To limit 

gravity wave formation a forward-backward scheme is used (Black 1994). In order to 

calculate vertical advection a centered difference in space and Euler-backward time 

scheme is used for all quantities except specific humidity since physical aspects like 

precipitation and evaporation hinder its adjustment through strictly dynamical 

calculations. A piecewise linear method that calculates the moisture physics at each step 

overcomes the creation of false minima and maxima is used instead. Some of the 

important aspects of the physics in the model, which apply to this research, are the 

calculation of convective and grid scale precipitation as well as a cloud model (Black 

1994). These are important because their presence as physical processes which affect the 

nature of the atmosphere being modeled are necessary in order to have accurate variables 

for input into the NPTI. It is essential to understand what aspects of the atmosphere are 

being modeled, so that an objective and informed look can be taken at the generation 

process of the input variables for the NPTI algorithm. The convective precipitation 

routine uses a parameterization scheme called the Berts-Miller cumulus parameterization 

(Staudenmaier 1996a). Model profiles are used to determine the type of convection 

possible and the physics involved. The model uses an explicit cloud water 

parameterization scheme, which uses the mixing ratios of water and ice to calculate the 

grid-scale precipitation (Staudenmaier 1996a). Of course, the most important aspect of 

the model for this research is whether it will be able to use all of the physics and 

dynamics schemes to accurately calculate the inputs to the NPTI and its thunderstorm 

prediction algorithm. 
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2.4.2 Meso-Eta 's Operational Evaluation. The Applied Meteorological Unit's 

(AMU) contracted report about the usefulness of the Meso-Eta for supporting the weather 

needs of the space program provided valuable information about the model's general 

trends (NASA CR-205409 1997). The report discussed the verification of the model 

using both an objective and a subjective approach to diagnosing its strengths and 

weaknesses. The objective verification concluded that the model produces forecast 

soundings for the summer months which are generally drier and more stable than actually 

observed and misrepresents the height of the tropopause at CCAS (NASA CR-205409 

1997). A statistically negative bias of the convective available potential energy and a 

positive bias of the lifted index, both of which indicate drier and more stable soundings, 

showed this. However, the results of their objective verification did not conclude 

whether the model was more accurate during the warm or cool season over east central 

Florida. They did notice that the errors were equally distributed by wind regime, easterly 

or westerly flow, during the four month study period; therefore, they did not stratify 

results based on the wind regime. The subjective verification, which included multiple 

case studies involving sea breeze circulations and thunderstorms, had more conclusive 

results about the ability of the model during these periods. They were able to see that the 

model still did not have the resolution necessary to incorporate the small mesoscale 

features of the sea, river, and lake breeze circulations, thunderstorm outflow boundaries, 

and other small features which are important for thunderstorm prediction over the Space 

Coast. The subjective case studies of warm season phenomena revealed that the 

thermally driven sea breezes were predicted by the model roughly 50 percent of the time 
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they were observed. They also showed that the Meso-Eta is able to predict organized 

convection, especially in the late afternoon, but cannot predict individual thunderstorm 

cells (NASA CR-205409 1997). These drawbacks in the model's performance aided in 

the research of the NPTI's performance, especially when dealing with thunderstorm 

probability acceptance criteria.   The AMU's research helps to justify the lower threshold 

percentage for a 'yes' or 'no' forecast used in this research. 

2.5 Statistical Methods 

Statistics are essential to providing an adequate demonstration of the effectiveness 

of any forecasting technique. In order to define the forecasting value of the NPTI applied 

with the Meso-Eta model output, two-by-two contingency tables were used with bias, hit 

rate, threat score, probability of detection, and false-alarm rate for measures of accuracy. 

A forecasting skill score was also calculated to compare this method versus 24 hour 

persistence. The skill score tests the performance of this proposed tool for forecasting 

thunderstorms against persistence forecasting. To check the dependence between the 

forecast and the observations a %2 test was used. This test will indicate if the observations 

and the forecasts are related, which is necessary in order to prove that the contingency 

square was not created by random events, thereby giving the statistics validity. 
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Observed 

Yes No 

Yes 

Forecast 

No 

a b a + b 

c d c + d 

a + c b + d N = 
a+b+c+d 

Figure 3. Two-By-Two Contingency Table 

The contingency table, shown in Figure 3, takes into account all outcomes of a 

forecast test. The result of a perfect forecast would have a + d = n with b=c=0 (Wilks, 

1995).   This would mean that the forecast perfectly matched the observations taken. 

However, very few forecasts are that accurate; therefore, we need to use tests that show 

the accuracy and bias of the forecast. These include hit rate (Eq. 6), which is the measure 

of how many forecasts were correct compared to the total number of forecasts (Wilks 

1995). It can be calculated by: 

a + d 
HR = 100 

N 
(6) 

This equation describes the overall forecasting ability of the algorithm. Another measure 

of accuracy is the threat score (Eq. 7) or critical success index. This accuracy statistic 

measures the ability of the forecast to get correct "yes" forecasts. In the case of 

predicting thunderstorms, it is important for the operator to know when a "no" forecast is 
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believable. Therefore, the threat score can be redefined to calculate correct "no" forecasts 

as well (Eq. 8), which is the definition of the inverse threat score. These two threat scores 

can be calculated using the equations: 

TS = 7 -100 (7) 
a + b + c 

for a "yes" forecast, and 

TSN = - r-100 (8) 
b + c + d 

for a "no" forecast. These statistics tell a forecaster what percent of "yes" or "no" 

forecasts are believable. These results are particularly important when looking at a case 

in which either the "no" or "yes" forecast dominates the forecast period. The probability 

of detection (Eq. 9) tells us the number of "yes" forecasts versus the number of "yes" 

observations. In mathematical terms, that is the p^ | Oj), which is the probability of 

thunderstorm occurrence, ol5 given that is was forecast, y,. The calculation of this 

statistic involves using the following equation: 

POD = -?— 100  . (9) 
a + c 

There is also a probability of detection for non-thunderstorm days (Eq. 10), which 

compares the number of "no" forecasts to the total number of "no" observations. This 

probability is called the inverse probability of detection and defined by the following 

equation: 

d 
PODN = - 7-100. (10) 

b + d 
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These statistics can be thought of as the individual hit rate for the "yes" or "no" forecast. 

Two other important quantities show the percentage of times the "yes" or "no" forecast 

failed. These measures are known as the false-alarm rate (Eq. 11) and the inverse false- 

alarm rate (Eq. 12). They lets the forecaster know what percentage of "yes" and "no" 

forecasts are incorrect. They are represented by the equations 

FAR = --100  , (11) 
a + b 

and 

FARN = —C—; -100  . (12) 
c + d 

Now that the accuracy measures of the forecast have been discussed, the overall 

bias of the forecasting technique must be determined. To get this general feeling about 

the ability of the method we will use the fraction of "yes" forecasts to "yes" observations 

(Wilks 1995). The bias (Eq. 13) can be calculated from the following equation: 

BIAS = ^--100 (13) 
a + c 

All of the accuracy and bias equations are shown in their percent probability form instead 

of a zero to one probability form. This form is used for all the statistics used in this 

research. 

After the different measures of accuracy and bias have been calculated, they need 

to be compared to the reference forecasting method of persistence. Persistence 

forecasting involves taking the weather that is occurring today and forecasting that for 

tomorrow. Persistence is a good reference forecasting method because it represents a 
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minimal skill forecast. If a forecast method cannot outperform persistence, then it is not 

necessary to further consider that method. In order to test the NPTI's success versus 

persistence, all of the accuracy and bias measures will be calculated for the persistence 

method. Then a forecast skill score (Eq. 14) will be calculated for the NPTI versus 

persistence (Wilks 1995). 

SS= ?~
AK

;  -100 (14) 
Aperf — Aref 

In equation 12, A is a standard accuracy measure that is calculated for the forecast method 

and the reference method, which in this case is persistence. The variable ^perf.is the value 

of the perfect forecast for the accuracy measure.   Therefore, a positive skill score will 

show the percent improvement over the reference method of persistence, whereas, a 

negative skill score indicates that persistence is the more accurate method. This skill 

score will be calculated for each of the accuracy measures used in this research to get the 

broadest idea of the value of the NPTI forecasts. 

Three other statistics were calculated to further the understanding of the 

algorithm's performance: the Heidke Skill Score, the Kuipers Skill Score, and the Brier 

Score (Wilks 1995). The Heidke Skill Score (Eq. 15) uses the hit rate as its accuracy 

measure, and compares versus the reference of a random forecast that has the same 

marginal distributions as the actual verification data set. This skill score has the same 

properties as a regular skill score, and can be calculated using the equation 

HSS = 
2MzM .100 . (15) 

{a + c){c + d) + (a + b)(b + d) 
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The Kuipers Skill Score (Eq. 16), also known as the Hanssen-Kuipers discriminant, 

Kuipers' performance index, or the true skill score, is similar to a regular skill score using 

the hit rate as its accuracy measure with a reference random forecast which is restricted to 

be unbiased. This skill score can be calculated using the equation 

ad-be .... 
KSS = - ^T-^-lOO • (16) (a + c){b + d) 

These two statistics were only used on the output of the NPTI with Meso-Eta inputs, 

since this was the main experiment in this research and are calculated to have a reference 

for future work on this subject. Finally, the Brier Score (Eq. 17) is a way of calculating 

the ability of the NPTI to forecast thunderstorm probabilities. This statistic uses the 

entire probability spectrum in the calculation. By defining an observed thunderstorm to 

be 95 percent forecast and a day without thunderstorms to have a 5 percent forecast, this 

method will compare the probabilities forecasted by the NPTI to these limits using the 

equation 

where the symbol yk is the forecast probability and ok is the observation probability. The 

Brier Score is negatively oriented with zero being a perfect forecast and anything over 

zero being the relative imperfection of the algorithm. From the Brier Score we can obtain 

a ratio skill score (Eq. 18) which is a comparison of the calculated Brier Score to the 

Brier Score of a reference forecasting technique like persistence or climatology. The 

ratio skill score can be calculated using the equation 
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BSref - BS 
RSS = -^~ -100. (18) 

BSref 

In order to give these statistics validity, a %2 test must be performed to show the 

dependence of the system. In a dependent system it is logical to investigate the causes of 

the association (Everitt, 1992). Without proving dependence, the results would be 

regarded as statistically insignificant. The test used was the Pearson's Chi Squared Test 

(Eq. 20). In order to calculate the chi squared, the expected value (Eq. 19) for each 

contingency must first be determined (Everitt 1992). The equation for finding the 

expected value is given by 

n- -n- 
Ea = -hr (i9) 

N 

where Eij represents the expected value of the i,j block of the contingency table, n{ is the 

marginal sum of the i* row, n} is the marginal sum of the j* column, and N is the total 

sum (Everitt 1992). The expected value can then be used to calculate the chi squared 

value as follows 

2       2     (y,     _   P   \2 

i=l   j=l -fry 

where nv is the value in the i,j block of the contingency table. The chi squared value can 

now be compared with the chi squared distribution to find a p-value for this distribution 

with one degree of freedom at a 0.05 significance level. The hypothesis is that there is no 

association, so a high chi squared indicates a failure. If the chi squared value is not less 

than the p-value given by the significance level then there is an association between the 

forecasts and observations. A chi squared greater that the p-value is the result desired by 
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this research because of the need for dependence. The issue of having too small of a 

sample size has been discussed by many mathematicians over the years and the greater 

than five expected value rule has been found to be more of a tradition than mathematical 

truth. Statisticians have shown that the %2 distribution is still valid for contingency tables 

when the cell expectation value in the smallest cell greater than 0.5. Thus the %2 test for 

independence may be used under these circumstances (Everitt, 1992). Because of this 

mathematical insight, it follows that this research has a basis in statistical theory and is 

valid to some extent as a result for the method being tested. However, a larger sample 

size will produce better results merely because it would be able to test an entire season or 
if 

multiple warm seasons. 

According to numerical weather prediction theory, in order to believe the statistics 

presented on the output from the NPTI algorithm, the "prefect prog" assumption had to be 

used. This assumption states that the output from a numerical model is a perfect forecast 

for the dynamic weather variables (Wilks 1995). This allows for the assumption that the 

variables being extracted for the model output have the value that they would have if 

measured during the morning sounding. Therefore, they can be used as a comparison to 

actual events. 

These equations were shown in full detail, so that the results of this research can 

be fully understood and used as needed by weather forecasters at CCAS. These statistics 

will also be used to compare the performance of the NPTI on a climatological data set 

against persistence over that period. This is being done to investigate whether the NPTI 

has any trends, biases, or faults that can be used when interpreting the NPTI results with 
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numerical model input. When taken together these statistics will illustrate the value of the 

NPTI used with the Meso-Eta output. This is also useful for interpreting the same-day 

NPTI, so it will be of use even if the Meso-Eta NPTI does not have positive results. 
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III. Methodology 

3.1 Overview 

Research to improve the day two thunderstorm prediction involved the collection 

and use of Meso-Eta numerical model output and archived observations to compare the 

results of the NPTI algorithm's forecasting ability to that of persistence. The data used in 

this research was obtained through several different means. It was then converted into an 

array for each of the variables that were input into the NPTI algorithm. The NPTI was 

calculated on the array and transformed into a binary, 'yes' or 'no', forecast for CCAS. 

These results were then statistically compared to persistence. A case study was then 
■ i 
'■*' 

conducted that involved the ability of the NPTI to predict thunderstorms over the entire 

20 years of past data and an investigation of missed forecasts for a possible reasons for 

the poor performance. 

3.2 Data Acquisition 

There were two main sources for the data used in this research. The first was 

NCEP which uses its World Wide Web site for distributing model data. The second was 

the Air Force Combat Climatology Center (AFCCC) which has the responsibility of 

archiving all weather observations made at Air Force facilities. These two data sources 

were the only locations found during this research which were able to provide the 

necessary data to run the NPTI calculations. 
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The Meso-Eta data was retrieved directly from the NCEP data source on the 

World Wide Web. It was essential to archive it daily since no other major resource does 

so for the Meso-Eta. At approximately 1800 UTC daily the AWIPS version of the 24 

hour forecast of the 1500 UTC model output was downloaded off of the web page in 

GRIB format and archived. This process began in early August and continued through 

September. Some data was lost during this time due to network errors, inconsistent 

updating of NCEP's web page, and local hard drive errors. This resulted in a limited 

number of useable days. The total data set consisted of 32 days with 13 in August and 19 

in September. It is important to note that NCEP provides a warning stating that the web 

page is not to be used operationally to retrieve model output. 

AFCCC was able to provide the observations from KTTS, which is the station 

identifier for CCAS, from an archive of station data. A thorough screening was done on 

the data to identify all days with reported thunderstorms and thunderstorms in the 

vicinity. This method was chosen as the comparison tool for the NPTI forecast because 

the use of ground observation is similar to the original method used by Neumann. This 

data was then examined for thunderstorm occurrence between 1000 UTC and 2200 UTC 

each day. The days with thunderstorms during this period for August and September, 

1997, were marked as thunderstorm days, the others were not. This was the data used for 

comparison and creation of the persistence forecast. AFCCC also provided observations 

from approximately 20 years of archived data from the Cape Canaveral station. This was 

used to test the ability of the NPTI to forecast thunderstorms over a large time frame and 

in the case study conducted after the results were compiled. 
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3.3 Meso-Eta Processing and NPTI Calculation 

The process of applying the Meso-Eta output to the NPTI algorithm was a major 

stepping stone in this research. The first goal was to extract the NPTI input variables 

from the Meso-Eta data. Then the ten by ten matrix of data points from around the 

station had to be partitioned from the entire map grid. The winds at these points were 

then rotated from map relative coordinates to Earth relative coordinates before they could 

be used in the calculations. The first calculation was finding the Showalter Stability 

Index from the model output. Then the mean layer relative humidity had to be calculated. 

Finally, the climatology was input as the date. This completed the set of input data 

needed for the NPTI. Forecast probabilities were calculated for each of the variables and 

the total thunderstorm probability at all the grid points in the matrix. Finally, the four 

nearest gird points were averaged to calculate the probability at CCAS. This was the 

resulting NPTI forecasted probability of thunderstorms. 

3.3.1 Meso-Eta Processing. The Meso-Eta output was a single 30 MB file that 

included the entire 24 hour forecast with every level and all variables. This data had to be 

degribbed using a program called unpkgrbl .x designed by NCEP and downloaded from 

their server. The program could be manipulated using a hexadecimal control, card 

method, which was described on a basic level in the code comments, to degrib specific 

variables and levels. This enabled the input variables of the NPTI to be extracted directly 

from the GRIB file. The variables included the 500-mb temperature, the 850-mb 

temperature, and the 850-mb dew point temperature which had to be used to calculate the 

Showalter Stability Index. The other variables extracted were the 600-mb through 800- 
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mb relative humidity, the 500-mb u and v components of the winds, and the 850-mb wind 

components. A total of 16 Meso-Eta output variables represented on the entire map 

projection were saved as the input file to the FORTRAN code which used them to 

calculate the five NPTI input variables. The code then calculate the complete NPTI 

forecast. 

3.3.2 NPTI Calculations. The code written for this research had to take the 185 

by 129 grib point on a tangential Lambert conformal map and reduce it down to a 

reasonable ten by ten grid around central Florida in order to save computation time. It 

was also required to run all calculations necessary to get a thunderstorm probability 

forecast for CCAS using the NPTI algorithm. The code was named eta_a.f and was 

programmed to run on a 'SPARK 20' SUN workstation. The NPTI algorithm was 

adapted to accept the entire ten by ten grid and was translated directly from the appendix 

of the original paper written by Neumann in 1971. This adapted code was included as the 

main subroutine in the etaa.f program. The other subroutines involved constructing the 

ten by ten matrix, calculating the Showalter Stability Index , calculating the 800-mb to 

600-mb layer mean relative humidity, and rotating the u and v wind components. 

The construction of the ten by ten matrix involved examining the latitude and 

longitude of each grid point from a chart constructed at NCEP to find a reasonable array 

of points that would include the entire Cape as well as some inland and Atlantic Ocean 

area. The ten by ten grid had its corners at the points (136,37), (136,28), (145, 28), 

(145,37) starting with the upper left hand corner and moving counter clockwise around 

the square. This was done to lessen the number of calculations and the time needed to 
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run the program as well as keep a fairly large grid which may enable forecasters to get an 

idea of nearby thunderstorm probabilities. The problem with this method is that the 

regression of the variables in the NPTI was done exclusively at Cape Canaveral to assist 

in space launch forecasting and was not designed for use in the surrounding locations. 

However, it does give an idea as to the probability of thunderstorms in the area. The 

inputs to the NPTI do not identify any specific mesoscale features, so it is reasonable to 

extend the NPTI algorithm to the immediate area. Only synoptic scale thunderstorm 

generation factors are taken into account in the NPTI algorithm. 

The Showalter Stability Index calculations were based on numerical calculations 

instead of the traditional graphical method. This code used the 850-mb temperature and 

dew point temperature to find a Lifted Condensation Level (LCL) where the potential 

temperature could be calculated. The potential temperature indicates the moist adiabat 

that was followed up to the 500-mb level to obtain the parcels 500-mb temperature. The 

parcel temperature was then subtracted from the environmental temperature to calculate 

the Showalter Stability Index. A negative number for the Showalter Stability Index is 

considered unstable whereas a more positive number is more stable. In order to find the 

parcels temperature at 500 mb, an iterative numerical method scheme was used which 

stepped through the calculations until it found a temperature which had a matching 

potential temperature to the one calculated at the LCL. This method was taken from the 

Air Weather Service (AWS) standard programming guide, AWS/TR-83/001, Equations 

and Algorithms For Meteorological Applications in Air Weather Service (Duffield and 
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Nastrom 1983). The numerically derived temperature was then used in the calculation of 

the Showalter Stability Index by subtracting it from the actual temperature at 500 mb. 

A rotation of the u and v components of the wind at both 500 mb and 850 mb had 

to be accomplished in order to move from a map relative coordinate system to an Earth 

relative system. This was done using the inverse of the equations used by NCEP to move 

to map relative coordinates which was found on NCEP's web page. The Lambert 

comformal map projection is a conic section that projects the Earth on a secant cone. The 

projection used by the Meso-Eta moves the projection from a secant cone to a tangential 

cone. This means that the cone only touches the Earth along a single line instead of 

entering and exiting the surface of the Earth. See Figure 4 for an geometric illustration of 

the tangential map projection (Montz and Sloane 1943). 

Figure 4. Tangential Lambert Comformal Mapping adapted from 
Elements of Topographic Drawing by Montz and Sloane. 
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The final subroutine was one designed to calculate the layer mean relative 

humidity in the 800-mb to 600-mb layer. This was done using a log pressure weighted 

averaging scheme. The value of the higher pressure levels were weighted more heavily in 

the average than the lower pressure levels since pressure levels are logarithmically 

separated. This technique was taken from the AWS/TR-83/001 standard programming 

guide (Duffield and Nastrom 1983). Finally, because of the location of CCAS, the four 

points, (140,33), (140,32), (141,32), (141,33), are averaged to find the thunderstorm 

probability. 

The data extracted from the Meso-Eta model and the calculations all had to be 

check for quality to ensure that the proper numbers were being input into the NPTI code. 

To check the quality of the Meso-Eta model, the data extracted was put into graphical 

form in GrADS and visually check to see if the data had reasonable values and synoptic 

structure. The Showalter Stability Index results were compared using the SHARP 

sounding generating program. This was done using both real-time data and data extracted 

from the Meso-Eta model output being run through SHARP and the code used in this 

research. The layer averaging and rotation matrix codes were check through manual 

calculations which resulted in very similar answers. Quality control was very necessary 

in the initial programming phase. 

The ultimate outcome of the code was to develop a way to find the thunderstorm 

probability calculated for the weather station at CCAS. The methods described above 

were the building blocks to the NPTI code. They were necessary in order to have the 
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correct inputs to Neumann's algorithm. Once the data processing was complete, the NPTI 

probabilities were output to set of files that were used as the input to the statistical 

calculations. 

3.4 Statistical Calculations 

The process of evaluating the results of the experiment involved an extensive set 

of statistical calculations. A perfect prog assumption, which states that the output from 

the numerical model is a perfect forecast for the variables being used in the NPTI code, 

was required to believe the results from the NPTI forecast (Wilks 1995). This implies 

that the value output by the model is the same as the value if it were measured during the 

morning sounding. Therefore, the accuracy and bias statistics show how well those 

"perfect" variable's forecast. A two-by-two contingency square was used as the basis of 

the statistics to evaluate the NPTFs worth with model data inputs. A FORTRAN code 

was used to compare the NPTI forecast percentages to the two months of observation 

data. This code built the contingency tables and calculated the accuracy and bias 

statistics as well as the skill score which were described in chapter two. A threshold 

percentage had to be found in order to compare the binary results in the contingency 

square. The threshold percentage was judged to be best if set at 30 percent. The two 

most common methods of setting threshold percentages are to choose the percentage that 

generate an unbiased forecast or the percentage which has the maximum threat score 

(Wilks 1995). The maximum threat score method was chosen even though it 

underforecasts. The justification for using a percentage below 50 was given by the 
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statistical method and the AMU's review of the performance of the Meso-Eta over CCAS. 

They found that the Meso-Eta was consistently drier and more stable than the actual 

atmosphere. For this reason the 30 percent threshold percentage was used. To calculate 

the remaining statistics, Statistix 1.0 was used. It calculated the Pearson x2 and its 

associated p-value to check the dependence of the observations to the forecast. The same 

accuracy, bias, and skill score statistics were also run for persistence as a comparison for 

the NPTI results. Persistence was forecasted using each days weather from the 

observations as the forecast for 24 hours later. If the NPTI algorithm were not able to 

outperform persistence, then it would be logical to assume that the Meso-Eta output used 

in the NPTI is not a useful forecasting tool. The final results of the statistics prompted 

further study into why four days were underforecast and one day was overforecast. 

3.5 Case Study Procedures 

Case study was used to look for trends that might describe the reasoning behind 

the forecast errors. The first part of the study centered around using the NPTI on the 20 

years of data to see if the NPTI had a regime where it did not perform well. The other 

part of the case study examined the model, observations, and satellite data to see if there 

was a trend that could account for the missed forecasts in three of the overforecast days. 

The NPTI algorithm was used in the first part of the case study to look for general 

trends in its effectiveness during days with different wind directions. As discussed by 

Bauman, Cape Canaveral forecasters have a difficult time predicting thunderstorms under 

easterly flow regimes (1997). To investigate the ability of the NPTI during different flow 
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regimes the 20 years of data was separated by the direction of the 850-mb winds in four 

categories.   These four regimes were the northeast (1 -90 degrees), northwest (271-360 

degrees), southeast (91-180 degrees), and southwest (181-270 degrees). These different 

regimes as well as the entire 20 years were then run through a simplified NPTI code, the 

statistics were generated, and the results were compared to persistence for that time 

period. These 20 years were the results of rigorous matching of the radiosonde and 

observation data from almost 50 years of archived data. This showed some general trend 

of the NPTI's ability to forecast thunderstorms and particularly its poor performance 

during northeasterly wind flow. 

The other part of the case study was conducted using the GrADs program. This 

program shows meteorological data in a simple and logical map layout. Using NCEP's 

wgrib and grib2grads programs the raw Meso-Eta model output was converted into 

GrADS format. This enabled research to be conducted on the meteorological 

phenomenon present in the model on the days when the forecasts were incorrect. Charts 

were constructed that showed the 1000-mb winds, relative humidity, temperature, 

dewpoint, the 850-mb and 700-mb winds, relative humidity, and temperature, and the 

500mb winds, geopotential height, temperature, Q-vectors, and Q-vector convergence 

over Florida. The case study focused on the 24 hour forecasts for September 22,23, and 

24, which were all underforecast. The meteorological charts developed were to show the 

general trends of the atmosphere on the those days to see if the NPTI algorithm was 

missing an important event that either caused or stifled thunderstorm occurrence. These 

charts were compared to the actual ground observations for those days and the 1200 UTC 

40 



satellite pictures. This was an attempt to check if the model poorly initialized on these 

days, thereby, resulting in incorrect inputs to the NPTI algorithm which would trigger a 

missed forecast. The analysis field for the Meso-Eta model was not downloaded when 

the 24 hour forecast field was downloaded; however, the models performance can be 

judged using the observations and satellite images. All of this further research was 

investigating possible ways to increase the performance of forecasters utilizing the 

forecast of the Meso-Eta output NPTI algorithm to predict thunderstorms. 
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IV. Results and Analysis 

4.1 Overview 

This research began as an attempt use the NPTI algorithm with input data from 

the Meso-Eta numerical model to produce useful day two thunderstorm forecasts. The 

research expanded to include an attempt to improve that process and investigate the 

overall forecasting ability of the NPTI. The data obtained from this research will be 

presented for the scrutiny of the reader in order to prove that this method is a viable 

forecasting method for the time frame indicated. The results also present an examination 

of the forecasts missed by the NPTI algorithm, which includes a climatological NPTI 

study and a case study of the days with, missed forecasts. 

4.2 NPTI with Meso-Eta Results 

The NPTI algorithm was designed to predict thunderstorm forecasts using daily 

soundings. Now the Meso-Eta output has been applied to the NPTI algorithm for 

prediction of thunderstorms one day in advance. To illustrate the value of this method, a 

statistical analysis was conducted which utilized a two-by-two contingency matrix 

method. This allowed for calculation of the accuracy and bias of the method. The 

accuracy measure result were then compared versus persistence in order to obtain the skill 

scores. This enabled some conclusions to be drawn on the ability of the NPTI code to 

predict thunderstorms using the Meso-Eta 24 hour forecast as input. The following tables 

briefly explain the results of the statistics and the NPTI's general forecasting ability. 
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Table 2. NPTI Two-By-Two Contingency Table Results. 
A, B, C, D, and N are the values for the corresponding blocks 
in the contingency table. Percent is the threshold percentage 
used in the calculations. 

A        B C        D N Percent " 
Total NPTI     19        1 4 8 32 30 

Persistence     40       6 5        10 61 N/A 

August 9        0 2 2 13 40 

September       8 0 4 7 19 30 

The contingency table produced by the NPTI results showed that the NPTI had a 

fair handle on the general condition of the atmosphere during the test period. Table 2 

shows that, of the 32 days in the sample, it only incorrectly forecast 5 days. In Table 2, 

the letters designate the corresponding block in the contingency table illustrated in Figure 

3. The last column in the chart is the threshold percentage used to convert the probability 

forecast into a binary forecast that could be used in the contingency table. The NPTI 

statistics were subsequently split into separate months to investigate the performance by 

month. The sample size of the monthly separations is statistically insignificant; there 

were not enough days in the sample to find independence. However, the results of the 

monthly data were quite interesting, so they have been presented in the following 

discussion. In the averaging process, standard deviations were calculated, but there was 

no significant correlation between the value of the standard deviation and the forecast 

ability of the NPTI. The results are reviewed in Appendix C. 
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Table 3. Accuracy Measures, Bias, and %2 Test Results 

HR       TS        TSN     POD     PODN   FAR     FARN    Bias       x p" 
 (%)       (%)       (%)       (%)       (%)        (%)       (%) Score 
NPTI      84.38    79.17    61.54    82.61     88.89     5.00      33.33      0.8696    14.11     0.0002 

Persist    81.97    78.43    47.62     88.89    75.86      13.04    39.82      1.0222    16.81     0.0000 

Aug        84.62    81.82    50.00    81.82    100        0.00      50 0.8182   N/A      N/A 

Sep        78.95    66.67    63.64    66.67    100        0.00      36.36      0.6667   N/A      N/A 

The accuracy measures, bias, and %2 test results are presented in Table 3. The %2 

clearly shows that the sample size is adequate for a preliminary study on the ability of the 

NPTI to predict day-two thunderstorms. Both the NPTI results and the persistence results 

were found to have dependence between the forecasts and the observations. The accuracy 

percentages show that the NPTI was able to outperform persistence over the test period. 

The only statistic that is not better than persistence is the probability of detection. The 

45th Weather Squadron indicated that the most important indicator of success, because of 

its overall statistical nature, was the threat score (TS), or critical success index. The 

threat score shows a 3.43 percent increase in forecasting ability over persistence, shown 

by the skill score (TS SS) in Table 4. This is evidence that there is some value in this 

procedure, but further study into improving the method is necessary if it is to become an 

operational technique. 

From the skill score results we can see some trends of the NPTI algorithm. In 

general, the NPTI is able to outperform persistence. This is particularly true for days 

without thunderstorms. The high skill score of the inverse threat score (TSN SS) and the 
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Table 4. Skill Score Results 

HRSS     TSSS      TSNSS      POD SS    PODN SS    FARSS     FARN SS 
(%) (%) (%) (%) (%) (%) (%) 

Total NPTI     13.37       3.43 26.58 

August 14.70       15.72       4.54 

September      -16.75      -54.52     30.58 

56.53 53.98 61.66 12.22 

63.64 100 100 -25.57 

200 100 100 8.69 

inverse probability of detection (PODN SS), which is similar to a hit rate for non- 

thunderstorm days, coupled with the low skill score for the probability of detection (POD 

SS), which is how well it found thunderstorms, indicates that the NPTI has much less 

trouble forecasting for days without thunderstorms than persistence. The incredibly high 

skill score for the false-alarm rate (FAR SS) is another indicator of this fact because the 

FAR is a measure of how many times it overforecast. That is why the inverse false-alarm 

rate (FARN) is so much higher than the FAR. The four days that the algorithm 

underforecast are much more noticeable in the statistics. Therefore, it is fairly safe to 

conclude that the NPTI algorithm is able to predict non-thunderstorm days fairly 

accurately. However, it must be remarked that not all of the days where a thunderstorm is 

not forecast are going to be clear, as seen by the comparatively low probability of 

detection. This is more critical for mission success because an incorrect "no" forecast 

could cause the loss of millions of dollars and possibly endanger crews, whereas, an 

incorrect "yes" forecast is just a missed opportunity. This would indicate that improving 

this method should result in an increased inverse false-alarm rate skill score (FARN SS), 

an increased POD SS, an increased hit rate skill score (HR SS), and the most important 
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measure to increase is the TS SS. Overall, the method has a sound statistical basis and 

can slightly outperform persistence for forecasting either weather phenomena as seen by 

the HR SS. 

It is interesting to note that the NPTI was much better at forecasting 

thunderstorms during the August time frame in this study. First, it generates significantly 

higher forecast percentage probabilities during the month of August. Second, it produced 

better statistics in every category except probability of detection than those produced by 

the entire test period combined. This may be a factor of climatology, since August is the 

month with the greatest number of thunderstorms in eastern Florida. It could also be a 

bias of the NPTI code, which may be able to better predict thunderstorms in August 

because of the variables used in the probability calculation. A point that may be 

considered in future research is to check if different threshold probabilities should be 

used for each month instead of one percentage over the entire time. This may produce 

better results from the NPTI code. The climatology study investigates this question for 

the extended time frame. 

The Heidke Skill Score, Kuipers Skill Score, and Brier Score all indicate the 

general performance of the forecasting method. The Heidke Skill Score (HSS) uses the 

hit rate as its accuracy measure with a reference of a random forecast with the same 

marginal distributions as the actual observational data. This shows us that the NPTI 

method is able to well outperform a random method with the thunderstorms on 62 percent 

of the days. The Kuiper Skill Score (KSS) method is very similar except it uses an 

unbiased reference forecast. Our forecast method was highly biased to underforecasting, 
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but it was able to outperform this method even better than it did for the HSS. The Brier 

Score covers the ability of the method over the entire range of the probability forecasts. 

It shows just how far off the NPTI method was from a perfect forecast. A score of zero 

would be perfection with everything over zero being the difference in the forecasting 

method from the perfect forecast. With a Brier Score of 0.2402, it can be said that the 

NPTI method is not nearly perfect. This means that it has a relative error of about 24 

percent away from a perfect forecasting ability. The ratio skill score versus persistence 

(RSS(P)) also shows this general trend of not being a perfect technique for forecasting the 

day-two thunderstorm probability. 

Table 5. Skill Scores Involving Other Reference Techniques.  

HSS(%)       KSS(%) BS RSS(P)(%) 
Total NPTI     64.91 71.5 0.2402 -9.9 

4.3 NPTI Over Extended Period Results 

A climatological data set of approximately 20 years was used to test the ability of 

the NPTI algorithm over an extended period. The data set was tested both as a whole and 

as subsets that divided the data by its low level flow regime into four major groups. This 

division would give general ideas about the NPTI's overall ability and any particular 

problems that it may have due to the difficulty in forecasting thunderstorms in easterly 

flow regimes. 
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The accuracy statistics, shown in Table 7, for the climatological study show some 

very interesting results about the forecast ability of the NPTI. The same method was used 

to calculate the accuracy and bias measures over the entire time frame, so that it could be 

directly compared to the tests conducted on the research with model input. Table 7 only 

shows the statistics for the 50 percent threshold level. Refer to Appendix D to see a range 

of levels from 40 percent to 55 percent or Appendix E for the entire range. This threshold 

percentage was shown because it is nearly the same as the unbiased threshold of 47 

percent. The maximum skill score threshold for this data is low-38 percent, seen in Table 

6. It is clear from these statistics that the NPTI does have a bias toward underforecasting. 

This bias agrees with the results found from the model input NPTI calculations. It is also 

fairly obvious that the NPTI has a split forecasting ability. During easterly flow regimes, 

especially from the north east, the NPTI will almost always forecast no thunderstorms 

because that is the dominant weather pattern, thus the high hit rate (HR). Conversely, the 

NPTI will forecast thunderstorms for most days when the winds are out of the southwest. 

This is shown by the low inverse threat score, and the high probability of detection. The 

excellent distribution of this climatological data resulted in definite dependence for the 

entire period, with a %2 of 427.49 and a p-score of 0.00 

Table 6. Accuracy Measures and Bias for the 38 Percentile Threshold Level 

HR TS        TSN      POD      PODN   FAR      FARN     Bias 
 (%) (%)       (%)       (%)        (%)        (%) (%)  

Persistence       69.38     47.65    57.55    64.63     75.86     35.53      24.05       1.0024 

Climo.NPTI    70.1        52.5      55.35     81.88     62.13     40.6        16.48       1.3784 
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Table 7. Accuracy Measures and Bias for the 50 Percentile Threshold Level. 
NC means not calculated.  

HR TS        TSN      POD      PODN   FAR     FARN      Bias 
 (%) (%)       (%)       (%)        (%)        (%)       (%)  

Persistence       69.38     47.65    57.55    64.63     75.86     35.53    24.05       1.0024 

Climo.NPTI 70.56 44.54 61.44 58.59 78.65 35.00 26.27 0.9014 

NENPTI 83.83 14.97 83.36 18.33 NC 55.10 NC 0.4083 

NWNPTI 67.69 30.46 62.36 39.47 NC 42.86 NC 0.6908 

SENPTI 71.00 29.25 67.05 41.75 NC 50.57 NC 0.8447 

SWNPTI 62.18 51.06 37.52 70.89 NC 35.38 NC 1.0971 

The skill scores for these variables, as shown in Table 8, indicate that the overall 

ability of the NPTI is very similar with that of persistence over a large time frame. 

However, if used properly the NPTI could be a useful tool for forecasters and enable 

them to outperform the persistence technique. Realizing the algorithm's strengths and 

weaknesses will enable the forecaster to estimate the reliability of the NPTI forecast. It is 

obvious that the NPTI is more believable when it forecasts no thunderstorms and the 

winds are out of the northeast or forecasts thunderstorm occurrence when the winds are 

from the southwest. This can be seen in the statistics because of the huge differences in 

the POD SS and TS SS, which are the main indicators of a successful thunderstorm 

forecast. This is most likely true because no convergence zone is created when the sea 

breeze and synoptic flow are both in the same general direction. The high temperature, 
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humidity, and convergent direction of winds from the southwest are the main reasons that 

most thunderstorms occur under those conditions. 

If the desired outcome of the NPTI is to have fewer days underforecast, then it 

may be better to use the 38 percent threshold of the maximum threat score. This would 

noticeably decrease the inverse false-alarm rate, and increase the probability of detection 

and the threat score, illustrated in Table 8. All of these conditions were the 

recommendations given earlier to improve the forecast ability of the NPTI in an attempt 

to lower the number of days falsely forecast as being clear. This was preferred forecast 

because of the relative impact that these incorrect forecasts have on the mission. 

Table 8. Skill Score for the 50 and 38 Percentile Threshold Level Statistics 

HRSS 
(%) 

TSSS 

(%) 

TSNSS 
(%) 

PODSS 

(%) 

PODN SS 

(%) 

FARSS 

(%) 

FARNSS 
(%) 

Climo. NPTI 
(50%) 
Climo. NPTI 
Skill Score 
NENPTI 

3.85 

2.35 

47.19 

-5.94 

9.26 

-62.43 

9.16 

-5.18 

60.8 

-17.08 

48.77 

-130.9 

11.56 

-56.88 

NC 

1.49 

-14.27 

-55.08 

-9.23 

31.48 

NC 

NWNPTI -5.52 -32.84 11.33 -71.13 NC -20.63 NC 

SENPTI 5.29 -35.15 22.38 -64.69 NC -42.33 NC 

SWNPTI -21.49 6.51 -47.18 17.7 NC 0.42 NC 

It is also interesting to investigate the forecast ability of the NPTI for the different 

months of the warm season. To best accomplish this task, multiple charts have been 

made which show the accuracy measures and bias versus the threshold percentage. This 

will show how the different thresholds affect the outcome of the total forecast. The 
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general rule applied in most studies that use contingency tables is to choose either the 

unbiased threshold percentage or the percentage which corresponds to the maximum 

threat score value. In the case of the NPTI, it is logical to choose either threshold. These 

graphs will let the 45th Weather Squadron determine which threshold is the best for their 

applications. The ultimate goal is still to improve the forecasting ability of the NPTI 

algorithm. 

The graphs shown in Figures 5 through 16 show the reliance of the different 

accuracy and bias measures on the choice of the threshold percentage. It is interesting to 

note the different thresholds where the forecast is unbiased. The months with more active 

thunderstorm generation have much higher unbiased threshold percentages, whereas, the 

less active months, like September and May, have much lower unbiased thresholds. Over 

the entire warm season these discrepancies are averaged out. It is also interesting to note 

the location of the maximum in threat score and the maximum in hit rate. Either of these 

thresholds could also be used to calculate the binary forecast, remembering that the 

maximum in threat score was able to provide the decrease in underforecast days by 

providing an overforecasting bias. This presentation shows that there is some possibility 

for different threshold percentages for different months during the warm season. 
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Figure 5. Graph of Accuracy Measures versus the Threshold Percentage. 
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Figure 6. Graph of Bias versus Threshold Percentage. 
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Figure 7. Graph of Accuracy Measures versus the Threshold Percentage: May. 
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Figure 8. Graph of Bias versus Threshold Percentage: May. 
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Figure 9. Graph of Accuracy Measures versus the Threshold Percentage: June. 
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Figure 10. Graph of Bias versus Threshold Percentage: June. 
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Figure 11. Graph of Accuracy Measures versus the Threshold Percentage: July. 
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Figure 12. Graph of Bias versus Threshold Percentage: July. 
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Figure 13. Graph of Accuracy Measures versus the Threshold Percentage: 
August. 
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Figure 14. Graph of Bias versus Threshold Percentage: August. 
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Figure 15. Graph of Accuracy Measures versus the Threshold Percentage: 
September. 
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Figure 16. Graph of Bias versus Threshold Percentage: September. 
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The statistical tests run for the ability of the NPTI using a climatological data base 

also included the Brier Score (BS) and the ratio skill score versus both persistence 

(RSS(P)) and climatology (RSS(C)). These statistics judge the ability of the NPTI's 

probability forecasts versus a probability forecast derived for both persistence and 

climatology. The Brier Score calculated for persistence was 0.3000 and the Brier Score 

for climatology was 0.2245. These were then used in the ratio skill score to calculate 

how well the method performed as a probability calculation. The results of those 

statistics are shown in table 9. The BS and the associated RSS statistics show a view of 

the NPTI as a reasonable forecasting technique. It definitely has a better RSS(P) than the 

experimental scheme which was -9.9%. However, it still is not an extremely accurate 

scheme versus climatology. Another way to examine the probability forecasts of the 

NPTI is through the use of an attributes diagram. This chart, shown in figure 17, is a 

visual way of identifying how the method performs versus the perfect forecast. It can be 

analyzed given the position of a perfect reliability line, a no skill line, a no resolution line, 

and the skill region, which is defined by the no skill line and the line that vertically 

crosses at the junction point of the no resolution and perfect reliability line. The forecast 

probability points are group in five percent increments from five to ninety five. This data 

Table 9. Brier Score and the Ratio Skill Score versus 
persistence RSS(P) and climatology RSS(C).  

BS RSS(P) (%)      RSS(C) (%) 

Climo.NPTI    0.1850     38.3 17.6 
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Figure 17. Attributes diagram for the four independent years. 

Table 10a. Observed relative frequency per forecast probability group. 

Forecast       0.05      0.10      0.15      0.20      0.25      0.30      0.35 
probability 

0.40      0.45 

Observed     0.103    0.053    0.103    0.273    0.205    0.360    0.539 
rel. freq. 

0.490    0.571 

Table 10b. Observed relative frequencies for 50 through 95 percent. 

P(Fore.)    0.50      0.55      0.60      0.65      0.70      0.75      0.80 0.85    0.90    0.95 

Obs. rel.    0.667    0.719    0.771    0.849    0.813    0.857    0.857 
freq. 

1.00    0.75    1.00 
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is detailed in table 10a and 10b. The data used was from the years 1983,1985, 1986, and 

1988 because they were independent from the data used by Neumann in the NPTI 

regression equations. The attributes diagram also shows the NPTI as a forecasting 

scheme with some skill. The diagram does, however, shows a definite bias toward 

underforecasting since the attribute line is consistently above the perfect reliability line, 

which corresponds with the earlier analysis of the two-by-two contingency tables. The 

diagram also shows that the NPTI is a method, which has fairly good resolution at the 

expense of good reliability. The NPTI is a forecasting method that has some ability to 

accurately forecast thunderstorms, but a more reliable technique would be much more 

useful for the operational forecasters. 

After reviewing the forecasting ability of the NPTI over the climatological data 

set it is important to note the results of the NPTI with Meso-Eta inputs. The NPTI 

calculated with the Meso-Eta inputs did have problems with days when the winds were 

out of the northeast. This may be caused by the lack of data points to the east of Cape 

Canaveral. This is always a problem for models because they are unable to produce as 

accurate a forecast in data sparse regions. It may also be a factor of the NPTI algorithm. 

The case study covers those days with missed forecasts in more depth and shows the 

meteorological backing to these results. 

60 



4.4 Case Study Results 

The case study was conducted in order to provide a better idea for why the 

forecasts were incorrect. The model output was the source of the graphical data used in 

the case study. The observational data, satellite imagery, and a surface chart for each day 

were also used as comparison tools. A meteorological study was conducted on three of 

the four underforecast days. This is because these three days are consecutive and it 

should be easier to find any commonalities. The one overforecast day was not reviewed 

because no general conclusion can be drawn from a single missed forecast, and the result 

may be due to the threshold level chosen for making the forecast binary. 

This case study involves three consecutive days in which the NPTI did not predict 

a thunderstorm, but one was observed. On 22 September 1997, the forecasted probability 

was 5 percent but a thunderstorm occurred that day. The other days were almost as bad 

with 21.75 percent on the 23rd and 19 percent on the 24th. This study will try to answer 

the question of why the NPTI forecasted so poorly. In order to investigate for any 

meteorological significance to this occurrence, this case study will focus primarily on the 

similarities between the days, but will also try to determine if there is any factors which 

may have generated the thunderstorms present in the model which was not picked up by 

the NPTI. 

The significant levels for this study are 500 mb, 700 mb, 850 mb, and 1000 mb. 

There are 39 charts in this case study with thirteen for each day of the study. The first 

day is 22 September 1997, with Figures 18 through 34, Figures 35 through 51 cover 23 

September, and 24 September is presented on Figures 52 through 68. These figures 
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follow the same order for each day, with 500-mb geopontential height first, followed by 

the winds at all the levels, then the 500-mb Q-vectors and Q-vector convergence, the 

temperature at all levels with the dew point at 1000 mb, the relative humidity at the three 

lower levels, followed at the end by the surface chart and the GOES East infrared satellite 

image for that day. This will provide an organized method for locating a chart being 

discussed. 

The 500-mb geopotential heights for the three days in question (Figures 18, 35, 

and 52) show the presence of a gradually weakening high pressure over the southeast, but 

Cape Canaveral is under the same pressure system during the entire case study. The flow 

regime appears to be a potential forecasting problem. On the 22nd (Figures 19, 20, 21, 

and 22), the flow is directed from the northeast because of the high pressure system to the 

north and the lower pressure moving in from the west. As the high pressure moves 

eastward on the 23rd (Figures 36, 37, 38, and 39), the winds switch from a northeast to a 

southeasterly flow. With the edge of the high pressure system sitting over Florida on the 

24th (Figures 53, 54, 55, and 56), the wind has become almost parallel to the shape of the 

Cape. They arrive from the southeast and head out over Cape Canaveral. The winds at 

the low levels are also fairly weak winds with speeds only around 5 to 10 knots. The 

temperature fields for all of the days appear to be fairly constant, with temperatures 

around 30 degrees Celsius, as would be expected under a high pressure system. These 

factors do not indicate the presence of a great amount of instability, but with the large 

gradient of the dew point temperature (Figures 29, 46, and 63) around the coast there may 

be some instability generated. The relative humidity charts for 700 mb (Figures 30, 47, 
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and 64) show a clear lack of mid-level moisture. However, the low level moisture is 

present as seen on the 850-mb and 1000-mb charts (Figures 31, 32, 48, 49, 65, and 66). 

The observations for the three days all indicated thunderstorms over the stations. The 

22nd and the 24th had late morning/afternoon thunderstorms that weren't too heavy 

according to the remarks. The 23rd had thunderstorms all day that traveled from the 

southeast to the northwest. The winds recorded for the 22nd were from the northeast with 

the winds moving to the east and southeast on the 23rd. The 24th had winds which 

ranged from 180 to 140 meaning that they were mainly out of the south by southeast. 

These wind directions tends to support the model products for the low level winds. The 

temperatures were missing for the most of the observations, but those recorded were 

around 17 to 24 degrees Celsius which are close to those seen on the 1000-mb 

temperature charts. The surface plots, seen in Figures 33, 50, and 67, show the same 

wind directions as the model, and a fairly stable stationary front to the north of Florida 

which is very common during the summer months. The 23 September surface plot shows 

moisture from the radar overlay over the east coast of Florida. This is supported by the 

IR satellite image which clearly shows some development. Thunderstorm development is 

not evident on the 22nd or the 24th, but both of those days had later thunderstorms than 

on the 23rd. All three of the satellite images (Figures 34, 51, and 68) show a branch of 

the subtropical jet moving across Florida during the forecast period. However, no clear 

sign of jet streaks or their associated secondary circulations were noticeable on the 

satellite images. Another prevalent large scale weather forcing factor seen on all of the 

satellite images is the huge cyclone off the Pacific Coast of Central America. The 500- 
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mb Q-vectors (Figures 23, 40, and 57), and especially their convergence (Figures 24, 41, 

and 58), indicate the presence of vertical motion in the atmosphere. The convergence of 

the Q-vector is proportional to upward vertical motion.   It is interesting to see that all 

three days had convergent Q-vectors over Cape Canaveral. They were especially strong 

on the 23rd, which happens to be the day with the strongest thunderstorms. 

The evidence of thunderstorm-generating features is clearly visible. There is the 

combination of vertical motion, moisture, and heating. The only thing that is not present 

is a sea breeze front or other significant forcing mechanism. However, the forcing 

mechanism may be present in an unseen source of significant upward vertical motion. 

The one factor that seems to severely detract from that hypothesis is the direction of the 

synoptic scale winds. The winds are all out of an easterly direction, which is not good for 

sea breeze fronts. The difficulty in predicting thunderstorms during easterly flow regimes 

tends to support the findings of Bauman in his study of thunderstorms over Cape 

Canaveral. Since this is such a small sample with only three days to investigate, this is 

clearly not a climatological study. However, even the climatological study partially 

supports the theory that the NPTI has difficulty forecasting thunderstorms that occur 

when the synoptic scale wind patterns are from the east. It is possible the forcing 

mechanism was on a scale that was not perceived by the model; therefore, the NPTI was 

not able to include it in its probability forecasts. The other possibility is that the NPTI is 

not able to adequately distinguish certain forcing factors that are not common during the 

entire warm season. Since the NPTI involves a regression, it catches most of the 

common features of the thunderstorm-generation process, especially on the synoptic 
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scale. The calculation may be naturally biased against thunderstorms during easterly 

flow regimes. These results may not be adequate for the forecasting precision necessary 

to operate in the environment where near perfect forecasts are the daily requirement 

because of the expense and danger of space launch and recovery. 
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Figure 18. Meso-Eta 500-mb Geopotential Height for 1500 UTC, 22 September 1997. 
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Figure 19. Meso-Eta 500-mb Winds Over Florida for 1500 UTC, 
22 September 1997. 
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Figure 20. Meso-Eta 700-mb Winds Over Florida for 1500 UTC, 
22 September 1997. 
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Figure 21. Meso-Eta 850-mb Winds Over Florida for 1500 UTC, 
22 September 1997. 
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Figure 22. Meso-Eta 1000-mb Winds Over Florida for 1500 UTC, 
22 September 1997. 
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Figure 23. Meso-Eta 500-mb Q-vectors Over Florida for 1500 UTC, 
22 September 1997. 
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Figure 24. Meso-Eta 500-mb Q-vector Divergence Over Florida for 
1500 UTC, 22 September 1997. 
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Figure 25. Meso-Eta 500-mb Temperatures Over Florida for 1500 UTC, 
22 September 1997. 

72 



25.5N 

25N 
86W 85W 84W 83W 82W 81W 80W 79W 78W 

Figure 26. Meso-Eta 700-mb Temperatures Over Florida for 1500 UTC, 
22 September 1997. 
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Figure 27. Meso-Eta 850-mb Temperatures Over Florida for 1500 UTC, 
22 September 1997. 
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Figure 28. Meso-Eta 1000-mb Temperatures Over Florida for 1500UTC, 
22 September 1997. 
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Figure 29. Meso-Eta 1000-mb Dew Point Temperatures Over Florida for 
1500 UTC, 22 September 1997. 
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Figure 30. Meso-Eta 700-mb Relative Humidity Over Florida for 
1500 UTC, 22 September 1997. 
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Figure 31. Meso-Eta 850-mb Relative Humidity Over Florida for 
1500 UTC, 22 September 1997. 
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Figure 32. Meso-Eta 1000-mb Relative Humidity Over Florida for 
1500 UTC, 22 September 1997. 
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Figure 33. Surface Map with Radar Overlay for 1200 UTC, 22 September 1997. 
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Figure 34. GOES East IR Satellite Image for 1215 UTC, 22 September 1997. 
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Figure 35. Meso-Eta 500-mb Geopotential Height for 1500 UTC, 23 September 1997. 
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Figure 36. Meso-Eta 500-mb Winds Over Florida for 1500 UTC, 
23 September 1997. 
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Figiu-e 37. Meso-Eta 700-mb Winds Over Florida for 1500UTC, 
23 September 1997. 
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Figure 38. Meso-Eta 850-mb Winds Over Florida for 1500 UTC, 
23 September 1997. 
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Figure 39. Meso- Eta 1000-mb Winds Over Florida for 1500 UTC, 
23 September 1997. 
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Figure 40. Meso-Eta 500-mb Q-vectors Over Florida for 1500 UTC, 
23 September 1997. 
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Figure 41. Meso-Eta 500-mb Q-vector Divergence Over Florida for 
1500 UTC, 23 September 1997. 
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Figure 42. Meso-Eta 500-mb Temperatures Over Florida for 1500 UTC, 
23 September 1997. 
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Figure 43. Meso-Eta 700-mb Temperatures Over Florida for 1500 UTC, 
23 September 1997. 
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Figure 44. Meso-Eta 850-mb Temperatures Over Florida for 1500 UTC, 
23 September 1997. 
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Figure 45. Meso-Eta 1000-mb Temperatures Over Florida for 1500 UTC, 
23 September 1997. 
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Figure 46. Meso-Eta 1000-mb Dew Point Temperature Over Florida for 
1500 UTC, 23 September 1997. 
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Figure 47. Meso-Eta 700-mb Relative Humidity Over Florida for 
1500 UTC, 23 September 1997. 

94 



Figure 48. Meso-Eta 850-mb Relative Humidity Over Florida for 
1500 UTC, 23 September 1997. 
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Figure 49. Meso-Eta 1000-mb Relative Humidity Over Florida for 
1500 UTC, 23 September 1997. 
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Figure 50. Surface Map with Radar Overlays for 1200 UTC, 23 September 1997. 
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Figure 51. GOES East IR Satellite Image for 1215 UTC, 23 September 1997. 
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Figure 52. Meso-Eta 500-mb Geopotential Height for 1500 UTC, 24 September 1997. 
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Figure 53. Meso-Eta 500-mb Winds Over Florida for 1500 UTC, 
24 September 1997. 
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Figure 54. Meso-Eta 700-mb Winds Over Florida for 1500 UTC, 
24 September 1997. 
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Figure 55. Meso-Eta 850-mb Winds Over Florida for 1500 UTC, 
24 September 1997. 
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Figure 56. Meso-Eta 1000-mb Winds Over Florida for 1500 UTC, 
24 September 1997. 
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Figure 57. Meso-Eta 500-mb Q-vectors Over Florida for 1500 UTC, 
24 September 1997. 
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Figure 58. Meso-Eta 500-mb Q-vector Divergence Over Florida for 
1500 UTC, 24 September 1997. 
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Figure 59. Meso-Eta 500-mb Temperatures Over Florida for 1500 UTC, 
24 September 1997. 
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Figure 60. Meso-Eta 700-mb Temperatures Over Florida for 1500 UTC, 
24 September 1997. 
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Figure 61. Meso-Eta 850-mb Temperatures Over Florida for 1500 UTC, 
24 September 1997. 
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Figure 62. Meso-Eta 1000-mb Temperatures Over Florida for 1500 UTC, 
24 September 1997. 
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Figure 63. Meso-Eta 1000-mb Dew Point Temperatures Over Florida for 
1500 UTC, 24 September 1997. 
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Figure 64. Meso-Eta 700-mb Relative Humidity Over Florida for 
1500 UTC, 24 September 1997. 
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Figure 65. Meso-Eta 850-mb Relative Humidity Over Florida for 
1500 UTC, 24 September 1997. 

112 



32N 

25N 
86W 85W 84W 83W 82W 81W 80W 79W 78W 

Figure 66. Meso-Eta 1000-mb Relative Humidity Over Florida for 
1500 UTC, 24 September 1997. 
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Figure 67. Surface Map with Radar Overlays for 1200 UTC, 24 September 1997. 

114 



Figure 68. GOES East IR Satellite Image for 1215 UTC, 24 September 1997. 
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V. Conclusions and Recommendations 

5.1 Overview 

As an initial exploration into the use of the Meso-Eta numerical model with the 

NPTI algorithm, this research indicated that it may have potential as a forecasting 

technique. Although use of this combination may provide a viable option for forecasting 

thunderstorms over CCAS and KCS, there is still a significant amount of research that 

can be done to test and improve the method. Mesoscale modeling and the use of statistics 

to help automate forecasts will continue to be a vital area of study for many years as the 

modeling, computers, and data sources continue to expand and increase our knowledge of 

the environmental system. 

5.2 Conclusions 

The hypothesis that the NPTI algorithm with Meso-Eta inputs could produce a 

forecast which could outperform persistence was tested. This method does perform 

slightly better than persistence on the limited time frame of this study according to the 

statistical analysis. The small sample size does not make this a definitive study on the 

subject, but it does provide an initial investigation into the value of this forecasting 

method for use by the 45th Weather Squadron. The operational value of this technique is 

very limited, but future research may provide a valuable forecasting aid. With continued 

research and improvements in technology over the next few years, this research may lead 

to an automated forecasting method that can be used by the forecasters to improve the 
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seven day planning forecast. The Applied Meteorology Unit, which resides with the 45th 

Weather Squadron at CCAS, is a valuable source of information and insight into the use 

of new technology and how to deliver that to the forecaster. With their aid, this could 

become a useful tool for the forecasters who support the space launch and recovery 

program. 

5.3 Recommendations 

The research completed was an initial study into the use of numerical model 

output as input to a local thunderstorm index. Many other approaches can be taken to 

improve this method of forecasting. We have seen that this small sample size was able to 

create somewhat skillful forecasts. Continued research should attempt to utilize a much 

larger sample size with at least a whole warm season and preferably multiple warm 

seasons. A problem with future research is that the Meso-Eta is being continually 

improved by NCEP. The model used in this research is scheduled to be updated 

sometime in the next year with future versions already being anticipated. Another 

direction that can be taken with future research is to use the actual model output to 

develop a multiple regression based thunderstorm probability algorithm instead of the 

NPTI, which was created for use with the daily radiosonde sounding. It is possible that 

other variables produced by the model will provide better input into probability 

calculation for thunderstorm occurrence. Other models may also provide some useful 

information for thunderstorm forecasting. This method could be tested on different 

models which have different dynamic calculation methods, different resolutions, and 
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different forecast lengths. The forecast period of the model is important because the 45th 

Weather Squadron is required to produce a seven day planning forecast. This research 

only concentrated on day-two of the planning forecast. Another idea is to include radar, 

satellite, and the extensive lightning detection network at Cape Canaveral to confirm 

thunderstorms on site. Because of the huge savings possible by providing improved 

support to the space launch program, continuation of similar research is highly 

encouraged. 
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Appendix A. Code for NPTI Algorithm with Meso-Eta Inputs 

*********************************************************** 

* This program is designed to take eta model output and use it to 
* calculate the Neumann-Pfeffer Thunderstorm Index. This code was 
* written for thesis work by 2LT Christian Wohl wend, AFIT/ENP. 

*   Last Modified: 20 NOV 97 * 
************************************************************************ 

PROGRAM ETA A 
PARAMETER(IE=10,JE=10) 
PARAMETER(MAXREC=16) 
REAL D(73,73), DD(5329) 
REAL C(260000) 
REAL ROW(IE,JE) 
REAL T500(IE,JE) 
REAL U500(IE,JE) 
REAL V500(IE,JE) 
REAL RH600(IE,JE) 
REAL RH625(IE,JE) 
REAL RH650(IE,JE) 
REAL RH675(IE,JE) 
REAL RH700(IE,JE) 
REAL RH725(IE,JE) 
REAL RH750(IE,JE) 
REAL RH775(IE,JE) 
REAL RH800(IE,JE) 
REAL T850(IE,JE) 
REAL TD850(IE,JE) 
REAL U850(IE,JE) 
REAL V850(IE,JE) 
REAL RH AVE(IE,JE) 
REAL SSI(IE,JE) 
REAL SPD8(IE,JE) 
REAL SPD5(IE,JE) 
REAL DIR8(IE,JE) 
REAL DIR5(IE,JE) 
REAL COF 
REAL TTS 
INTEGER KGDS(200) 
INTEGER N1(IE,JE) 
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INTEGER N2(IE,JE) 
INTEGER N3(IE,JE) 
INTEGER N4(IE,JE) 
INTEGER N5(IE,JE) 
INTEGER N6(IE,JE) 
INTEGER NPTI(IE,JE) 
INTEGER KTIME(IE,JE) 
INTEGER KERR 
INTEGER I 
INTEGER J 
INTEGER L 
INTEGER V 
INTEGER IREC 
INTEGER LENPDS 
INTEGER LENKGDS 
INTEGER NWORDS 
INTEGER DAY 
INTEGER MO 
INTEGER YR 
INTEGER HR 
INTEGER P 
INTEGER Q 
INTEGER YEARC(92) 
INTEGER MONTHC(92) 
INTEGER DAYC(92) 
INTEGER TSTC(92) 
INTEGER YEART(92) 
INTEGER MONTHT(92) 
INTEGER DAYT(92) 
INTEGER TSTT(92) 
INTEGER PREC 
INTEGER PRET 
INTEGER JSPD8(IE,JE) 
INTEGER JSPD5(IE,JE) 
INTEGER JDIR8(IE,JE) 
INTEGER JDIR5(IE,JE) 
INTEGER KCOF 
INTEGER KTTS 
CHARACTER* 1 PDS(IOO) 
CHARACTER*2 Y 
CHARACTER*2 M 
CHARACTER*2 DA 
CHARACTER*2 H 
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CHARACTER* 8   OUT 
CHARACTERM4 INFILE 
CHARACTERM4 OUTFILE 

EQUIVALENCE (D(1,1),DD(1)) 
* 

113 FORMAT (Al 6) 
112 FORMAT (1014) 
111 FORMAT (10F10.5) 
114 FORMAT (A8,2X,F5.2) 
115 FORMAT (12,12,12,4X11) 
116 FORMAT (10(I4,1X)) 

OPEN(7,FILE='~/Thesis/programs/KCOF.dat',STATUS='OLD') 
OPEN(8,FILE=VThesis/programs/KTTS.dat',STATUS='OLD) 
DO 2 Q= 1,92 

READ(7,115) YEARC(Q),MONTHC(Q),DAYC(Q),TSTC(Q) 
READ(8,115) YEART(Q),MONTHT(Q),DAYT(Q),TSTT(Q) 

2      CONTINUE 
DO1000P=l,69 

OPEN(9,FILE='~/Thesis/programs/input.dat',STATUS=,OLD') 
READ(9,113)INFILE 
INFILE = VThesis/output/V/INFILE 

************************************************************************ 

* Enter data here * 

OPEN (UNIT=1 l,FILE=INFILE,STATUS='OLD', 
&      ACCESS=,SEQUENTIAL,,FORM=,UNFORMATTED',IOSTAT=KERR) 

* 

IF (KERR.NE.0) THEN 
PRINT 50 , INFILE, KERR 

50       FORMAT (' ERROR OPENING UNIT=11, FILE NAME = ',A44, 
&      ', IOSTAT = ',18) 

STOP 50 
ENDIF 

* 

IREC=1 
V=l 

* 

DO 100IREC-1,MAXREC 
READ (11,END=1100) LENPDS, LENKGDS, NWORDS 
PRINT *,'LENPDS,LENKGDS,NWORDS = ',LENPDS,LENKGDS,NWORDS 
READ (11,END=1100) (PDS(L),L=1,LENPDS) 
YR = PDS(13) 
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MO = PDS(14) 
DAY = PDS(15) 
HR = PDS(16) 
PRINT *,'YEAR =',YR,' MONTH =',MO,' DAY =*,DAY,' HOUR =',HR 
IF (LENKGDS.GT.O) THEN 

READ (11,END=1100) (KGDS(L),L=1,LENKGDS) 
* PRINT *,'KGDS =' 
* PRINT *,(KGDS(L),L=1,LENKGDS) 

END IF 
READ (11,END=1100) (C(L),L=l,NWORDS) 

* * 

* Organize the data into readable form that will incorporate into the * 
* NPTIcode. * 

CALL GRID1 (C,NWORDS,ROW) 
* 

IF(V.EQ.1)THEN 
D0 14J=1,JE 

DO 13 1=1,IE 
T500(I,J) = ROW(I,J) 

13 CONTINUE 
14 CONTINUE 

ENDIF 
IF(V.EQ.2)THEN 
D0 16J=1,JE 

DO 15 1=1,IE 
U500(I,J) = ROW(I,J) 

15 CONTINUE 
16 CONTINUE 

ENDIF 
IF(V.EQ.3)THEN 
D0 18J=1,JE 

DO 171=1,IE 
V500(I,J) = ROW(I,J) 

17 CONTINUE 
18 CONTINUE 

ENDIF 
IF(V.EQ.4)THEN 
DO20J=l,JE 

DO 19 1=1,IE 
RH600(I,J) = ROW(I,J) 

19 CONTINUE 
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20 CONTINUE 
ENDIF 
IF(V.EQ.5)THEN 
D0 22J=1,JE 
D0 21I=1,IE 

RH625(I,J) = ROW(I,J) 
21 CONTINUE 
22 CONTINUE 

ENDIF 
IF(V.EQ.6)THEN 
D0 24J=1,JE 

DO 23 1=1,IE 
RH650(I,J) = ROW(I,J) 

23 CONTINUE 
24 CONTINUE 

ENDIF 
IF(V.EQ.7)THEN 
D0 26J=1,JE 
DO 25 1=1,IE 

RH675(I,J) = ROW(I,J) 
25 CONTINUE 
26 CONTINUE 

ENDIF 
IF(V.EQ.8)THEN 
D0 28J=1,JE 

DO 27 1=1,IE 
RH700(I,J) = ROW(I,J) 

27 CONTINUE 
28 CONTINUE 

ENDIF 
IF(V.EQ.9)THEN 
DO30J=l,JE 
DO 29 1=1,IE 

RH725(I,J) = ROW(I,J) 
29 CONTINUE 
30 CONTINUE 

ENDIF 
IF(V.EQ.10)THEN 
D0 32J=1,JE 
DO 311=1,IE 

RH750(I,J) = ROW(I,J) 
31 CONTINUE 
32 CONTINUE 
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ENDIF 
IF(V.EQ.11)THEN 
D0 34J=1,JE 

DO 33 1=1,IE 
RH775(I,J) = ROW(I,J) 

33 CONTINUE 
34 CONTINUE 

ENDIF 
IF(V.EQ.12)THEN 
D0 36J=1,JE 

DO 35 1=1,IE 
RH800(I,J) = ROW(I,J) 

35 CONTINUE 
36 CONTINUE 

ENDIF 
IF(V.EQ.13)THEN 
D0 38J=1,JE 

DO 371=1,IE 
T850(I,J) = ROW(I,J) 

37 CONTINUE 
38 CONTINUE 

ENDIF 
IF(V.EQ.14)THEN 
DO40J=l,JE 

DO 39 1=1,IE 
TD850(I,J) = ROW(I,J) 

39 CONTINUE 
40 CONTINUE 

ENDIF 
IF(V.EQ.15)THEN 
D0 42J=1,JE 
D0 41I=1,IE 
U850(I,J) = ROW(I,J) 

41 CONTINUE 
42 CONTINUE 

ENDIF 
IF(V.EQ.16)THEN 
D0 44J=1,JE 

DO 43 1=1,IE 
V850(I,J) = ROW(I,J) 

43 CONTINUE 
44 CONTINUE 

ENDIF 
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V = V+1 
100 CONTINUE 

DO102I=l,IE 
DO 101 J=1,JE 

SPD8(I,J) = SQRT(U850(I,J)*U850(I,J)+V850(I,J)*V850(I,J)) 
DIR8(I,J) = ATAN(V850(I,J)/U850(I,J)) 
SPD5(I,J) = SQRT(U500(I,J)*U500(I,J)+V500(I,J)*V500(I,J)) 
DIR5(I,J) = ATAN(V500(I,J)/U500(I,J)) 

101 CONTINUE 
102 CONTINUE 

************************************************************************ 

* * 

* This section calculates the mean RH, the Showalter Index, unrotates * 
* the wind coordinates, and finds the NPTI by calling subroutines. * 
************************************************************************ 

CALL RELH (RH600,RH625,RH650,RH675,RH700,RH725,RH750,RH775, 
& RH800,RH_AVE) 

CALL SHOW (T850,TD850,T500,SSI) 
CALL ROT1 (U850,V850,U500,V500) 
CALL NP70 (U850,V850,U500,V500,RH_AVE,SSI,DAY,MO, 

& N1,N2,N3,N4,N5,N6) 
CALL PRCNT (HR,N1,N2,N3,N4,N5,N6,NPTI) 
CALL POINT (N5,COF,TTS,KCOF,KTTS) 

* * 

* This section writes the output to file. * 

WRITE(Y,'(I2)')YR 
WRITE(M;(I2)')MO 

WRITE(DA,'(I2)')DAY 

WRITE(H,'(I2)')HR 

M = '07/M(2:2) 
IF(DAY.LT.10)DA = '07/DA(2:2) 
IF(HR.LT.10)H = '07/H(2:2) 
IF(HR.EQ.15)THEN 

OUTFILE = '~/Thesis/fl5/7/INFILE(17:17)//Y//M//DA//H// 
&'NPTI.dat' 

ELSE 
OUTFILE = ,~/Thesis/f03/7/INFILE(17:17)//Y//M//DA//H// 

&'NPTI.dat* 
ENDIF 
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OUT = Y//M//DA//H 
OPEN(51 ,FILE=OUTFILE,STATUS='UNKNOWN') 
OPEN(61 ,FILE=WThesis/programs/KCOF J3UT',STATUS='UNKNOWN') 
OPEN(71 ,FILE=WThesis/programs/KTTS J)UT',STATUS='UNKNOWN) 

* 

DO 900 Q = 1,92 
IF((YEARC(Q).EQ.YR).AND.(MONTHC(Q).EQ.MO).AND. 

&      (DAYC(Q).EQ.DAY))THEN 
WRITE(61,114)OUT,COF 
IF(KCOF.EQ.TSTC(Q))PREC=l 

ELSE 
GOTO 900 

ENDIF 
IF((YR.EQ.YEART(Q)).AND.(MO.EQ.MONTHT(Q)).AND. 

&      (DAY.EQ.DAYT(Q)))THEN 
WRITE(71,114)OUT,TTS 
IF(KTTS.EQ.TSTT(Q))PRET=1 

ELSE 
GOTO 900 

ENDIF 
900    CONTINUE 

*) 
*) 

WRITE(51,112) ((N1(I,J),I=1,IE),J=1,JE) 
WRITE(51,H 

WRITE^l," 
1,112) ((N2(I,J),I=1,IE),J=1,JE) 
I,*) 
I,*) 
1,112) ((N3(I,J),I=1,IE),J=1,JE) 
L,*) 
I,*) 
1,112) ((N4(I,J),I=1,IE),J=1,JE) 
I,*) 
I,*) 
1,112) ((N6(I,J),I=1,IE),J=1,JE) 
I,*) 
I,*) 
1,112) ((N5(I,J),I=1,IE),J=1,JE) 
I,*) 
I,*) 
1,112) ((NPTI(I,J),I=1,IE),J=1,JE) 
[,*) 

WRITE(5L 
WRITE(5L 
WRITE(5L 
WRITE(51: 

WRITE(51; 

WRITE(51; 

WRITE(51; 

WRITE(5F 
WRITE(51; 

WRITE(51; 

WRITE(51; 

WRITE(51; 

WRITE(51; 

WRITE(51; 

WRITE(51; 

WRITE(51; 

WRITE(51; 

WRITE(51,*) 
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* WRITE(51,116) ((KTIME(I,J),I=1,IE),J=1,JE) 
WRITE(*,*) 'Output File = ',OUTFILE 

* WPJTE(51,*) 
* WRITE(51 ,*) 'KCOF PREDICTION =',KCOF,*, PREDICTABILITY =*,PREC 
* WRITE(51,*) *KTTS PREDICTION =',KTTS,', PREDICTABILITY =',PRET 

DO903J=l,JE 
DO901I = l,IE 
IF(NTEST(U850,V850,l,(MO-4)).GT.0)THEN 

JSPD8(I,J) = INT(SPD8(I,J) + 0.5) 
JDIR8(I,J) = INT(DIR8(I,J) + 0.5) 
WRITE(51,*) 'The 850mb winds of ,JDIR8(I,J),JSPD8(I,J), 

& 'atpoint:I=',I,',J=',J 
WRITE(51,*) 'are beyond the 99% ellipse of the dependant 

& data.' 
ENDIF 
IF(NTEST(U500,V500,2,(MO-4)).GT.0)THEN 

JSPD5(I,J) = INT(SPD5(I,J) + 0.5) 
JDIR5(I,J) = INT(DIR5(I,J) + 0.5) 
WPJTE(51,*) The 500mb winds of ,JDIR5(I,J),JSPD5(I,J), 

& 'at point: I =',I,', J - ,J 
WRITE(51,*) 'are beyond the 99% ellipse of the dependant 

& data.' 
ENDIF 

901      CONTINUE 
903    CONTINUE 

WRITE(51,*)" 
CLOSE(51) 

1000   CONTINUE 
* 

CLOSE(61) 
CLOSE(71) 

1100 END 
* 

* * 

* This program is designed to take the 40-km AWIPS eta data and put * 
* it in the six by six grid that is being used in the calculations * 
* of the NPTI over Cape Canaveral,FL. This code was written for * 
* thesis work by 2LT Christian Wohlwend, AFIT/ENP. * 
* * 

* Last Modified: 29 0CT97 * 

* 
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SUBROUTINE GRIDl (C,NWORDS,ROW) 
PARAMETER(IM=185,JN=129,IE=10,JE=10) 
REAL C(NWORDS) 
REAL GRID(IM,JN) 
REAL ROW(IE,JE) 
INTEGER      NWORDS 
INTEGER      L 
INTEGER      I 
INTEGER      J 
INTEGER      M 
INTEGER      N 

* 

L=l 
DO200N=l,JN 
DO150M=l,IM 

GRID(M,N)=C(L) 
L=L+1 

150     CONTINUE 
200    CONTINUE 

* 

1 = 1 
J=l 
DO 210 N = 28,37 

DO 205 M= 136,145 
ROW(I,J) = GRID(M,N) 
IF(I.LT.10)THEN 

1 = 1+1 
ELSE 

1 = 1 
J = J+1 

ENDIF 
205      CONTINUE 
210    CONTINUE 

* 

RETURN 
END 
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*********************************************************************** 
* * 

* This program is designed to calculate the mean Relative Humidity * 
* over the 800-mb to 600-mb layer using Meso-Eta, 25 mb spaced surfaces * 
* The code was written with the aid from AWS/TR-83/001, Equations and * 
* Algorithms for Meteorological Applications in Air Weather Service * 
* (1983) for thesis work by 2LT Christian S. Wohlwend, AFIT/ENP. * 
* * 

* Last Modified: 29 0CT97 * 

* 

SUBROUTINE RELH (RH600,RH625,RH650,RH675,RH700,RH725,RH750, 
& RH775,RH800,RH_AVE) 

PARAMETER(IE=10,JE=10,KE=9) 
REAL     RH(IE,JE,KE) 
REAL     RH_P(IE,JE,KE) 
REAL     RH_AVE(IE,JE) 
REAL     RH800(IE,JE) 
REAL     RH775(IE,JE) 
REAL      RH750(IE,JE) 
REAL     RH725(IE,JE) 
REAL     RH700(IE,JE) 
REAL     RH675(IE,JE) 
REAL     RH650(IE,JE) 
REAL     RH625(IE,JE) 
REAL     RH600(IE,JE) 
REAL     P(KE) 
INTEGER  I 
INTEGER  J 
INTEGER  K 

P(l)=800 
P(2)=775 
P(3)=750 
P(4)=725 
P(5)=700 
P(6)=675 
P(7)=650 
P(8)=625 
P(9)=600 

* Input Data * 
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DO 111 J=1,JE 
DO110I=l,IE 

RH(I,J,1) = RH800(I,J) 
110 CONTINUE 
111 CONTINUE 

D0 113J=1,JE 
D0 112I=1,IE 

RH(I,J,2) = RH775(I,J) 
112 CONTINUE 
113 CONTINUE 

D0 115J=1,JE 
D0 114I = 1,IE 

RH(I,J,3) = RH750(I,J) 
114 CONTINUE 
115 CONTINUE 

D0 117J=1,JE 
D0 116I=1,IE 

RH(I,J,4) = RH725(I,J) 
116 CONTINUE 
117 CONTINUE 

D0 119J=1,JE 
D0 118I=1,IE 

RH(I,J,5) = RH700(I,J) 
118 CONTINUE 
119 CONTINUE 

DO 121 J=1,JE 
DO120I=l,IE 

RH(I,J,6) = RH675(I,J) 
120 CONTINUE 
121 CONTINUE 

DO 123 J=1,JE 
DO 122 1 = 1,IE 

RH(I,J,7) = RH650(I,J) 
122 CONTINUE 
123 CONTINUE 

D0 125J=1,JE 
D0 124I = 1,IE 

RH(I,J,8) = RH625(I,J) 
124 CONTINUE 
125 CONTINUE 

D0 127J=1,JE 
D0 126I=1,IE 

RH(I,J,9) = RH600(I,J) 
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126 CONTINUE 
127 CONTINUE 

*********************************************************************** 

* Calculate Mean RH * 

DO130K=l,KE-l 
D0 129J=1,JE 

DO 128 1=1,IE 
RH_P(I,J,K) = (0.5*(RH(I,J,K)+RH(I,J,K+1))* 

& (LOG(P(K))-LOG(P(K+l)))) 
128 CONTINUE 
129 CONTINUE 
130 CONTINUE 

D0 132J=1,JE 
DO 1311=1,IE 

RH_AVE(I,J) = (l/(LOG(P(l))-LOG(P(KE))))*(RH_P(I,J,l)+ 
& RH_P(I,J,2)+RH_P(I,J,3)+RH_P(I,J,4)+ 
& RH_P(I,J,5)+RH_P(I,J,6)+RH_P(I,J,7)+ 
& RH_P(I,J,8)) 

131 CONTINUE 
132 CONTINUE 

* 

RETURN 
END 

*     This Program is designed to calculate the Showalter Stability * 
* Index for the desired input. The program is designed to run with 
* the only inputs being Temperature at 850 mb and 500 mb and the 
* Dew Point at 850 mb. Temp values are to be input in degrees 
* Kelvin. The output value will be the SSI. This code was * 
* written with aid from AWS/TR-83/001, Equations and Algorithms * 
* for Meteorological Applications in Air Weather Service (1983) 
* for thesis work by 2LT Christian S. Wohlwend, AFIT/ENP 

* 
* 

* 

*        Last Modified: 29 OCT 97 * 

* 
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SUBROUTINE SHOW (T850,TD850,T500,SSI) 
PARAMETER(IE=10,JE=10) 
REAL T850(IE,JE)     ! Temperature at 850 mb 
REAL TD850(IE,JE)    ! Dew Point at 850 mb 
REAL T500(IE,JE)     ! Temperature at 500 mb 
REAL CP ! Specific Heat of dry air 
REAL C ! Kelvin conversion 
REAL K ! RD/CP 
REAL DELTA_T        ! Fraction of temp guess 
REAL EPSILON        ! Allowable error 
REAL ZERO ! Number zero 
REAL TP500(IE,JE)    ! Calculated Temp of parcel 
REAL TLCL(IE,JE)     ! Temperature of the LCL 
REAL PLCL(IE,JE)     ! Pressure of the LCL 
REAL E(IE,JE)        ! Vapor Pressure at LCL 
REAL EP ! Saturation Vapor Pressure 
REAL L(IE,JE)        ! Latent Heat of water vapor 
REAL LP ! Latent heat of parcel 
REAL WLCL(IE,JE)     ! Mixing ratio at 850 mb 
REAL WP ! Saturation Mixing ratio 
REAL THETAJD(IE,JE) ! Partial Potential Temp 
REAL THETA_SE(IE,JE) ! Pseudo-equiv. Potential Temp 
REAL THETAP ! ThetaD of parcel 
REAL THETA_EP        ! Theta SE of parcel 
REAL SSI(IE,JE)      ! Showalter Stability Index 
REAL ERR ! Error function 
REAL ERRP ! Second Error function 
REAL TP ! Temp guess 
REAL TP2 ! Second Temp guess 
INTEGER  I ! Column counter 
INTEGER  J ! Row counter 

* Define Constants * 

CP = 0.24 
C = 273.16 
K = 0.2854 
EPSILON = 0.05 
ZERO = 0.0 

f "¥* 'I* t* t* "T* *T* f f* 'l^ t* *T* *T* **P t* f* *t* *T* t^ *t* *t* f I flVVl if    \/ Ofl C\ l\ I £*G^ ^* ^* *P *t* *I* *t* f* T* T* T1* *t* 1* t* f* *I^ *1* T* *1* T* *t* T* *T* *t* *t* t* 'P *!* *I* *i* ^* T* *t* *T* T1* 
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* WRITE(*,*) 'What is the temperature at 850 mb?(C)' 
* READ(*,100) T850 
* WRITE(*,*) 'What is the Dew Point at 850 mb?(C)' 
* READ(*,100)TD850 
* WRITE(*,*) 'What is the temperature at 500 mb?(C)' 
* READ(*,100)T500 
************************************************************** 

* Find the variables at the LCL * 
************************************************************************ 

DO 53 J=1,JE 
DO 521=1,IE 

T850(I,J) = T850(I,J) - C 
TD850(I,J) = TD850(I,J) - C 
TLCL(I,J)=(TD850(I,J)-((0.212+0.001571*TD850(I,J)- 

& 0.000436*T850(I,J))*(T850(I,J)-TD850(I,J))) + C) 
T850(I,J) = T850(I,J) + C 
TD850(I,J) = TD850(I,J) + C 
PLCL(IJ) = 850.0*((TLCL(U)/T850(I,J))**(1.0/K)) 
IF(TLCL(I,J).GE.C)THEN 

E(I,J) = (10.0**(23.832241 - (5.02808*LOG10(TLCL(I,J))) 
& -(1.3816*(10.0**(-7))* 
& (10.0**(11.334 - (0.0303998*TLCL(I,J))))) 
& + (8.1328*(10.0**(-3))* 
& (10.0**(3.49149 - (1302.8844/TLCL(I,J))))) 
& - (2949.076/TLCL(I,J)))) 

L(I,J) = (597.3 - (0.564*(TLCL(I,J) - C))) 
ELSE 

E(I,J) = (10.0**((3.56654*LOG10(TLCL(I,J))) - 
& (0.0032098*TLCL(I,J)) - (2484.956/TLCL(I,J)) 
& + 2.0702294)) 

L(I,J) = (597.3 - (0.574*(TLCL(I,J) - C))) 
ENDIF 
WLCL(I,J) = ((0.62197*E(I,J))/(PLCL(I,J)-E(I,J))) 
THETA_D(I,J)=(TLCL(I,J)*((850.0/(PLCL(I,J)-E(I,J)))**(K))) 
THETA_SE(I,J)=THETA_D(I,J)*(EXP((L(I,J)*WLCL(I,J))/ 

& (CP*TLCL(I,J)))) 

* Find the Temp of the parcel at 500mb. * 

TP = (C - 5.0) 
DELTA_T = 0.05 
EP = (10.0**((3.56654*LOG10(TP)) - (0.0032098*TP) 

&        - (2484.956/TP) + 2.0702294)) 
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LP = (597.3 - (0.574*(TP - C))) 
WP = ((0.62197*EP)/(500.0-EP)) 
THETAP = (TP*((850.0/(500.0 - EP))**(K))) 
THETA_EP = THETAP*(EXP((LP*WP)/(CP*TP))) 
ERR = (THETA_EP - THETA_SE(I,J)) 
IF(ABS(ERR).LT.EPSILON)THEN 

TP500(I,J) = TP 
ELSE 

109 TP2 = TP + DELTAJT 
EP = (10.0**((3.56654*LOG10(TP2)) - (0.0032098*TP2) 

& - (2484.956/TP2) + 2.0702294)) 
LP = (597.3 - (0.574*(TP2 - C))) 
WP = ((0.62197*EP)/(500.0-EP)) 
THETAP - (TP2*((850.0/(500.0 - EP))**(K))) 
THETA_EP = THETAP*(EXP((LP*WP)/(CP*TP2))) 
ERR_P = (THETA_EP - THETA_SE(I,J)) 
IF(ABS(ERR_P).LT.EPSILON)THEN 

TP500(I,J) = TP2 
ELSE 

IF((ERR.LT.ZERO.AND.ERR_P.GT.ZERO).OR. 
& (ERR.GT.ZERO.AND.ERR_P.LT.ZERO))THEN 

DELTAJT = (0.5*(DELTAJT)) 
GOTO 109 

ELSE 
IF(ABS(ERR_P).LTABS(ERR))THEN 

TP = TP2 
ERR = ERR_P 
GOTO 109 

ELSE 
DELTA_T = (-1.0*(DELTA_T)) 
GOTO 109 

ENDIF 
ENDIF 

ENDIF 
ENDIF 

* Calculate the SSI * 

SSI(I,J) = (T500(I,J) - TP500(I,J)) 
* SSI(I,J) = (INT(SSI(I,J)* 100.0 +0.5))/100.0 
52 CONTINUE 
53 CONTINUE 
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RETURN 
END 

* 
sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic stc stc stc sic sic sic sic sic sic sb sic sic sic sic sic sic sic «lc sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sb sic sic sic sic sic sic sic sic sic sic sic sic sic sic sfc sic sic sic sic sic sic 

* * 

* This program was written to transform the u and v components of * 
* the wind from grid relative to earth relative coordinates. It * 
* was written for thesis work by 2LT Christian Wohlwend, AFIT/ENP. * 
* * 

* Last Modified: 29 OCT 97 * 

SUBROUTINE ROT1 (U850,V850,U500,V500) 
PARAMETER(IE=10,JE=10) 
REAL U850(IE,JE) 
REAL V850(IE,JE) 
REAL U500(IE,JE) 
REAL V500(IE,JE) 
REAL LON(IE,JE) 
REAL LONl(IE),LON2(IE),LON3(IE),LON4(IE),LON5(IE) 
REAL LON6(IE),LON7(IE),LON8(IE),LON9(IE),LON10(IE) 
REAL UR8 
REAL VR8 
REAL UR5 
REAL VR5 
REAL ANGLE 
REAL LAMBDA 
REAL CONE 
REAL PI 
INTEGER   I 
INTEGER   J 

* * 

* Longitude of each point in the 10 x 10 grid. * 

DATA LON1 ,LON2,LON3,LON4,LON5,LON6,LON7,LON8,LON9,LONl 0 
&/277.71,278.12,278.52,278.93,279.34,279.74,280.15,280.56,280.96, 
&281.37,277.75,278.16,278.56,278.97,279.38,279.79,280.20,280.60, 
&281.01,281.42,277.79,278.20,278.61,279.01,279.42,279.83,280.24, 
&280.65,281.06,281.47,277.82,278.24,278.65,279.06,279.47,279.88, 
&280.29,280.70,281.11,281.52,277.86,278.28,278.69,279.10,279.51, 
&279.92,280.33,280.74,281.16,281.57,277.90,278.32,278.73,279.14, 
&279.56,279.97,280.38,280.79,281.20,281.62,277.94,278.36,278.77, 
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&279.19,279.60,280.01,280.43,280.84,281.25,281.67,277.98,278.40, 
&278.81,279.23,279.65,280.06,280.48,280.89,281.30,281.72,278.02, 
&278.44,278.86,279.27,279.69,280.11,280.52,280.94,281.35,281.77, 
&278.06,278.48,278.90,279.32,279.74,280.15,280.57,280.99,281.40, 
&281.82/ 

* 

PI = 4.0*ATAN(1.0) 
DO 58 1=1,IE 

LON(1,1 )=LONl (I)*PI/180 
LON(I,2)=LON2(I)*PI/l 80 
LON(I,3)=LON3(I)*PI/l 80 
LON(I,4)=LON4(I)*PI/l 80 
LON(I,5)=LON5(I)*PI/l 80 
LON(I,6)=LON6(I)*PI/l 80 
LON(I,7)=LON7(I)*PI/l 80 
LON(I,8)=LON8(I)*PI/l 80 
LON(I,9)=LON9(I)*PI/l 80 
LON(1,10)=LON10(I)*PI/180 

58     CONTINUE 
CONE = SIN(25*PI/180) 
LAMBDA = 265*PI/180 

* * 

* Calculate winds in earth relative coordinates instead of a model * 
* relative coordinate system. * 

DO60J=l,JE 
D0 59I=1,IE 
UR8 = U850(I,J) 
VR8 = V850(I,J) 
UR5 = U500(I,J) 
VR5 = V500(I,J) 
ANGLE = CONE*(LON(I,J) - LAMBDA) 
U850(I,J) = UR8*COS(ANGLE) - VR8*SIN(ANGLE) 
V850(I,J) = VR8*COS(ANGLE) + UR8*SIN(ANGLE) 
U500(I,J) = UR5*COS(ANGLE) - VR5*SIN(ANGLE) 
V500(I,J) = VR5*COS(ANGLE) + UR5*SIN(ANGLE) 

59 CONTINUE 
60 CONTINUE 

RETURN 
END 
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* 

* * 

* This program is designed to calculate the Neumann-Pfeffer * 
* Thunderstorm Index for the grid. The code was written by * 
* C.J. Neumann in 1970/71 and was modified for thesis work by * 
* 2LT Christian Wohlwend, AFIT/ENP. * 
* * 

* Last Modified: 29 OCT 97 * 

* 

SUBROUTINE NP70 (U850,V850,U500,V500,RH_AVE,SSI,DAY,MO, 
&      N1,N2,N3,N4,N5,N6) 
PARAMETER(IE=10,JE=10,KE=5,LE=36) 
REAL  U850(IE,JE) 
REAL  V850(IE,JE) 
REAL  U500(IE,JE) 
REAL  V500(IE,JE) 
REAL  RH_AVE(IE,JE) 
REAL  SSI(IE,JE) 
REAL  UV850 
REAL  UV500 
REAL  RHF 
REAL  SIF 
REAL  CP 
REAL  PROB 
REAL  C(KE,LE) 
REAL  SMLRH(KE) 
REAL  FZ 
REAL  X(2) 
REAL  Y(2) 

* INTEGER KTIME(IE,JE) 
INTEGER MO 
INTEGER I 
INTEGER J 
INTEGER K 
INTEGER L 
INTEGER M 
INTEGER N1(IE,JE) 
INTEGER N2(IE,JE) 
INTEGER N3(IE,JE) 
INTEGER N4(IE,JE) 
INTEGER N5(IE,JE) 
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INTEGER N6(IE,JE) 
INTEGER DAY 
INTEGER DY 

*   INTEGER TIME 

DATASMLRH/12.0,15.0,22.0,35.0,19.0/ 

101 FORMAT(F13.7) 

OPEN(17, FILE = WThesis/programs/const.dat', STATUS = 'OLD') 

DO103K=l,KE 
DO102L=l,LE 

READ(17,101) C(K,L) 
102 CONTINUE 
103 CONTINUE 

* 

K = MO - 4 
IF((K.EQ.5).OR.(K.EQ.2))THEN 

IF(DAY.EQ.30)THEN 
K = K+1 
DAY=1 

ELSE 
DAY = DAY + 1 

ENDIF 
ELSE 
IF(DAYEQ.31)THEN 
K = K+1 
DAY=1 

ELSE 
DAY = DAY + 1 

ENDIF 
ENDIF 
IF((K.LT. l).OR.(K.GT.5))THEN 

WRITE(*,*) 'THIS PROGRAM IS ONLY OPERATIONAL FOR MAY 
THROUGH 

&SEPTEMBER.' 
99      STOP 

ENDIF 
IF((K.GE.1).AND.(K.LE.3))THEN 

WRITE(*,*) ' CHANGE THE LIMITS OF K AND RERUN THE PROGRAM. 
98       STOP 

ENDIF 
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DO105J=l,JE 
DO104I=l,IE 
X(l) = U850(I,J) 
Y(l) = V850(I,J) 
X(2) = U500(I,J) 
Y(2) = V500(I,J) 
DO 61 M= 1,2 
IF(M.EQ.1)L=1 
IF(M.EQ.2)L=11 
FZ = C(K,L) + C(K,L+1)*X(M)+C(K,L+2)*Y(M)+C(K,L+3)*X(M) 

& *Y(M)+C(K,L+4)*X(M)*X(M)+C(K,L+5)*Y(M)*Y(M)+C(K,L+6) 
& *X(M)*X(M)*X(M)+C(K,L+7)*X(M)*X(M)*Y(M)+C(K,L+8)* 
& X(M)*Y(M)*Y(M)+C(K,L+9)*Y(M)*Y(M)*Y(M) 

FZ = FIXFZ(FZ,M,K,X,Y) 
IF(M.EQ.1)UV850=FZ 
IF(M.EQ.2)UV500=FZ 

61 CONTINUE 
IF((RH_AVE(I,J)-SMLRH(MO)).LT.(0.0))THEN 

RHF = 0.01 
ELSE 

L = 21 
RHF = C(K,L) + C(K,L+1)*RHAVE(I,J) + C(K,L+2)* 

& RH_AVE(I,J)*RH_AVE(I,J) + C(K,L+3)*RH_AVE(I,J)* 
& RH_AVE(I,J)*RH_AVE(I,J) 

ENDIF 
L = 25 
SIF = C(K,L) + C(K,L+1)*SSI(I,J) + 

& C(K,L+2)*SSI(I,J)*SSI(I,J) 
UV850 = ADJUST(UV850) 
UV500 = ADJUST(UV500) 
RHF  =ADJUST(RHF) 
SIF  =ADJUST(SIF) 
L = 28 
DY = NBRDA(MO,DAY) 
CP = C(K,L)+C(K,L+1)*DY+C(K,L+2)*DY*DY 
L = 31 
PROB = C(K,L)+C(K,L+1)*UV850+C(K,L+2)*UV500+C(K,L+3)*RHF+ 

& C(K,L+4)*SIF+C(K,L+5)*CP 
* CALL ISTART(X, Y, 1 ,DAY,PROB,TIME) 

N1(I,J) = INT(UV850* 100.0 + 0.5) 
N2(I, J) = INT(UV500* 100.0 + 0.5) 
N3(I,J) = INT(RHF* 100.0 + 0.5) 
N4(I,J) = INT(SIF* 100.0 + 0.5) 
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N5(I,J) = INT(PROB* 100.0 + 0.5) 
N6(I,J) = INT(CP* 100.0 + 0.5) 

* KTIME(I,J) = TIME 
IF(N5(I,J).LT.5) N5(I,J) = 5 
IF(N5(I,J).GT.95) N5(I,J) = 95 

104 CONTINUE 
105 CONTINUE 

CLOSE(17) 
RETURN 

END 
* 

* * 

* This function fixes the results for 850mb and 500mb wind * 
* functions in the case of strong easterly winds * 

FUNCTION FIXFZ(FZOLD,M,MON,X,Y) 
REAL  ERR 
REAL  Y(2) 
REAL  X(2) 
REAL  FZOLD 
INTEGER M 
INTEGER MON 

* 

IF(M.EQ.1)THEN 
IF(MON.EQ.l)THEN 

ERR = Y(M) + 2.0*X(M) + 38.9 
ELSEIF(MON.EQ.2)THEN 
ERR = Y(M) + 0.3*X(M) + 15.4 

ELSEIF(MON.EQ.3)THEN 
ERR = -Y(M) + 1.6*X(M) + 30.4 

ELSEIF(MON.EQ.4)THEN 
ERR = Y(M) + 2.3*X(M) + 25.0 

ELSE 
GOTO 

75 
ENDIF 

IF(ERR.LT.0.)THEN 
GO TO 70 

ELSE 
GO TO 75 

ENDIF 
ELSE 
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IF(M0N.EQ.1)THEN 
ERR = Y(M) + 0.7*X(M) + 22.3 

ELSEIF(M0N.EQ.2)THEN 
ERR = Y(M) + 5.0*X(M) +78.9 

ELSEIF(M0N.EQ.3)THEN 
GOTO 75 

ELSEIF(MON.EQ.4)THEN 
ERR = Y(M) + 4.0*X(M) + 59.7 

ELSE 
GOTO 75 

ENDIF 
IF(ERR.LT.O.)THEN 

GO TO 70 
ELSE 

GO TO 75 
ENDIF 

ENDIF 
70    FIXFZ = 0.01 

RETURN 
75     FIXFZ = FZOLD 

RETURN 
END 

* 

* * 

* This function adjusts probability to within allowable range. * 

FUNCTION ADJUST(V) 
REAL  V 

* 

IF(V.LE.0.)THEN 
ADJUST = 0.01 

ELSEIF((V-0.99).LE.0.)THEN 
ADJUST = V 

ELSE 
ADJUST = 0.99 

ENDIF 
RETURN 

END 
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* This function computes the day number. * 

FUNCTION NBRDA(MONTH,KDA) 
INTEGER MONTH 
INTEGER KDA 
INTEGER MONDA(12) 
DATAMONDA/0,31,59,90,120,151,181,212,243,273,304,334/ 
NBRDA = MONDA(MONTH) + KDA 
RETURN 

END 
* 

* * 

* This calculates the tstm start time. * 

SUBROUTINE ISTART(V,W,LEV,X,Y,TIME) 
PARAMETER(LAE=3 5,IE=2) 
REAL       C(LAE) 
REAL       Y 
REAL        V(IE) 
REAL       W(IE) 
REAL       X 
REAL       S 
REAL       B 
INTEGER     IN 
INTEGER    JN 
INTEGER    LA 
INTEGER     LEV 
INTEGER    TIME 

93 FORMAT(F13.7) 
OPEN(l 1 ,FILE=VThesis/programs/c.dat*,STATUS='OLD') 
IF(Y.LT.0.4)THEN 

TIME = 0 
GOTO 95 

ENDIF 

D0 94LA=1,LAE 
READ(11,93)C(LA) 

94 CONTINUE 
S = C(1)+C(2)*Y+C(3)*Y*Y+C(4)*Y*Y*Y+ 
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&     C(5)*X+C(6)*X*Y+C(7)*X*Y*Y+C(8)*X*X+ 
&     C(9)*X*X*Y+C(10)*X*X*X+C(11)*W(LEV)+C(12)*W(LEV)* 
&     Y+C(13)*W(LEV)*Y*Y+C(14)*W(LEV)*X+C(15)* 
&     W(LEV)*X*Y+C(16)*W(LEV)*X*X+C(17)*W(LEV)*W(LEV)+C(18)* 
&     W(LEV)*W(LEV)*Y+C(19)*W(LEV)*W(LEV)*X+C(20)*W(LEV)* 
&     W(LEV)*W(LEV)+C(21)*V(LEV)+C(22)*V(LEV)*Y+C(23)*V(LEV)* 
&     Y*Y+C(24)*V(LEV)*X+C(25)*V(LEV)*X*Y+C(26)* 
&     V(LEV)*X*X+C(27)*V(LEV)*W(LEV)+C(28)*V(LEV)*W(LEV)*Y+ 
&     C(29)* V(LEV)* W(LEV)*X+C(30)* V(LEV)* W(LEV)* W(LEV)+C(31)* 
&     V(LEV)*V(LEV)+C(32)*V(LEV)*V(LEV)*Y+C(33)*V(LEV)*V(LEV)* 
&     X+C(34)*V(LEV)*V(LEV)*W(LEV)+C(35)*V(LEV)*V(LEV)*V(LEV) 

IF(S.LT.10.0)S = 10.0 
IF(S.GT.22.0)S = 22.0 
IN = INT(S) 
B = FLOAT(IN) 
JN = INT(((S-B)*60.0) + 0.5) 
IF((JN-60).GE.0)THEN 

JN = 0 
IN = IN+1 
TIME = IN*100 + JN 

ELSE 
TIME = IN*100 + JN 

ENDIF 
CLOSE(ll) 

95     RETURN 
END 

* 

* * 

* This determines if the observed winds are beyond the 99 * 
* percentile range of the dependant data. * 

FUNCTION NTEST(U,V,LEV,M) 
PARAMETER(ME=5) 
REAL    CT8(ME),ST8(ME),A8(ME),B8(ME),XH8(ME),YK8(ME) 
REAL    CT5(ME),ST5(ME),A5(ME),B5(ME),XH5(ME),YK5(ME) 
REAL    XPRIME 
REAL    YPRIME 
REAL    U 
REAL    V 
REAL     SUM 
INTEGER LEV 
INTEGER M 
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DATA CT8/0.84897,0.89180,0.98686,0.84989,0.83772/ 
DATA ST8/0.52844,0.45243,0.16160,0.52696,0.54610/ 
DATAA8/33.79,30.58,25.88,26.77,35.78/ 
DATAB8/24.06,21.78,18.58,19.26,24.93/ 
DATAXH8/-0.120,1.902,2.146,0.061,-2.573/ 
DATAYK8/0.596,3.257,4.94l,4.359,1.887/ 
DATA CT5/0.82511,0.98741,0.97630,0.83962,0.83772/ 
DATA ST5/0.56497,0.15816,0.21644,0.54317,0.46020/ 
DATAA5/45.06,33.46,28.04,30.72,40.06/ 
DATA B5/34.26,25.64,23.18,22.89,27.15/ 
DATA XH5/12.336,5.065,2.048,0.995,2.560/ 
DATA YK5/-1.539,0.511,1.700,2.202,0.268/ 

* 

IF(LEV.EQ.1)THEN 
XPRIME = (U-XH8(M))*CT8(M)+(V-YK8(M))*ST8(M) 
YPRIME = (V-YK8(M))*CT8(M)-(U-XH8(M))*ST8(M) 
SUM = (XPRIME*XPRIME)/(A8(M)*A8(M))+(YPRIME* YPRIME)/ 

& (B8(M)*B8(M)) 
IF((SUM - 1.0).LE.(0.0))THEN 

GOTO 30 
ELSE 

GOTO 40 
ENDIF 

ELSE 
XPRIME = (U-XH5(M))*CT5(M)+(V-YK5(M))*ST5(M) 
YPRIME = (V-YK5(M))*CT5(M)-(U-XH5(M))*ST5(M) 
SUM = (XPRIME*XPRIME)/(A5(M)*A5(M))+(YPRIME*YPRIME)/ 

& (B5(M)*B5(M)) 
IF((SUM- 1.0).LE.(0.0))THEN 

GOTO 30 
ELSE 

GOTO 40 
ENDIF 

ENDIF 
30    NTEST = 0 

RETURN 
40    NTEST = 1 

RETURN 
END 
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* 
************************************************************************ 

* * 

* Last Modified: 31 OCT 97 * 
************************************************************************ 

* 

SUBROUTINE POINT (N5,COF,TTS,KCOF,KTTS) 
PARAMETER(IE=10,JE=10) 
REAL     COF 
REAL     TTS 
INTEGER N5(IE,JE) 
INTEGER  KCOF 
INTEGER  KTTS 

COF = (FLOAT(N5(3,4)) + FLOAT(N5(4,4)) + FLOAT(N5(3,5)) + 
&      FLOAT(N5(4,5)))/4.0 

TTS = (FLOAT(N5(5,5)) + FLOAT(N5(6,5)) + FLOAT(N5(5,6)) + 
&      FLOAT(N5(6,6)))/4.0 

IF(COF.GE.40.0)THEN 
KCOF = 1 

ELSE 
KCOF = 0 

ENDIF 
IF(TTS.GE.40.0)THEN 

KTTS = 1 
ELSE 

KTTS = 0 
ENDIF 
RETURN 

END 
* 

*23456789012345678901234567890123456789012345678901234567890123456789012 

145 



File c.dat used in program 

+0.1273831E+2 
-0.5524785E+2 
+0.1678743E+2 
-0.3044658E+1 
+0.1428297E+0 
+0.4120300E+0' 
-0.5984368E-1 
-0.1020633E-2 
-0.8332961E-3 
+0.2010301E-5 
+0.1091247E+1 
-0.2395890E+0 
+0.8079287E+0 
-0.9742853E-2 
-0.3330773E-2 
+0.2572378E-4 
+0.3275030E-2 
-0.1128065E-5 
+0.3928772E-4 
-0.3878205E-3 
+0.3856991E-1 
+0.2283849E+0 
-0.1152510E+1 
-0.1318092E-2 
+0.5700343E-2 
-0.2110866E-6 
+0.5209711E-2 
+0.5253384E-4 
+0.4564636E-5 
-0.6700146E-3 
+0.1260419E-1 
+0.9910755E-2 
-0.1220748E-3 
+0.1705095E-3 
-0.4914740E-4 
99999 
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File const.dat used in program 

+0.1787416E+0 +0.1074020E-1 +0.1365651E-1 +0.4523660E-3 
-0.1802959E-3 +0.3397793E-3 -0.1051838E-4 -0.3954366E-4 
+0.3376410E-4 +0.1677435E-5 +0.1206249E+0 +0.1080646E-1 
+0.1001964E-1 +0.2794513E-3 -0.1012098E-3 +0.1964561E-3 
-0.1929388E-5 -0.1095389E-4 -0.6512555E-5 -0.1931907E-5 
+0.1037449E+0 -0.1196854E-1 +0.4832994E-3 -0.3570444E-5 
+0.4273235E+0 -0.7480216E-1 +0.3056700E-2 -0.5430778E+0 
+0.6855607E-2 -0.1053707E-4 -0.1589528E+0 +0.5503053E+0 
+0.3738171E+0 +0.3233246E+0 +0.5656907E+0 +0.2053246E-1 
+0.3326784E+0 +0.2172438E-1 +0.2162950E-1 +0.3762057E-3 
-0.6835820E-3 +0.2579027E-3 +0.1179004E-5 +0.1437934E-5 
-0.3373770E-4 -0.2199710E-4 +0.2927882E+0 +0.2638450E-1 
+0.1023307E-1 +0.3206674E-3 +0.7055071E-4 +0.1576005E-3 
-0.3090318E-4 -0.1422489E-4 +0.5588606E-5 -0.9225416E-5 
+0.1350110E+0 -0.1999291E-1 +0.8150660E-3 -0.6342578E-5 
+0.6102192E+0 -0.8066767E-1 +0.2403756E-2 -0.1323037E+0 
+0.1070858E-2 +0.1208962E-4 -0.5556250E+0 +0.6102450E+0 
+0.4851770E+0 +0.3646010E+0 +0.3541640E+0 +0.6391500E+0 
+0.4307867E+0 +0.4366697E-1 +0.1055475E-1 -0.3983282E-4 
-0.3116466E-3 -0.1888946E-2 -0.5616631E-4 +0.7757704E-4 
-0.5417381E-4 +0.3519052E-4 +0.4145883E+0 +0.3166340E-1 
-0.7151265E-3 +0.5390950E-3 +0.4251009E-4 -0.5091109E-4 
-0.2425546E-4 +0.1581160E-4 -0.2172134E-4 -0.1060904E-4 
-0.1029031E+0 -0.2906759E-2 +0.4229306E-3 -0.3308301E-5 
+0.6177575E+0 -0.6421018E-1 +0.1310411E-2 +0.9355280E+0 
-0.3771816E-2 +0.6918595E-5 -0.5553775E+0 +0.6370509E+0 
+0.4154169E+0 +0.4982033E+0 +0.4217904E+0 +0.2361394E+0 
+0.3627524E+0 -0.3272211E-1 +0.1085207E-1 -0.5623188E-4 
+0.1038914E-2 -0.3726892E-3 -0.3354727E-4 -0.1055251E-3 
-0.6772392E-5 +0.1606764E-4 +0.3932798E+0 +0.3119719E-1 
+0.2545731E-2 +0.1592548E-3 +0.9662810E-4 +0.2887853E-4 
-0.3745136E-4 -0.1717338E-4 -0.1704165E-4 +0.4082921E-5 
+0.2562494E+1 -0.1702073E+0 +0.3551389E-2 -0.2161341E-4 
+0.5271789E+0 -0.3530199E-1 -0.1094883E-2 -0.4163536E+0 
+0.1394724E-1 -0.4493190E-4 -0.4622971E+0 +0.6391629E+0 
+0.4061392E+0 +0.4244231E+0 +0.5676596E+0 +0.6062162E-1 
+0.2816768E+0 +0.1256518E-1 +0.5804331E-2 +0.1096534E-3 
-0.2671097E-3 +0.1469291E-4 -0.1099520E-4 +0.2925611E-5 
+0.3228711E-5 -0.3225703E-5 +0.2527479E+0 +0.1084204E-1 
+0.3136786E-2 +0.1899334E-3 -0.2175208E-3 -0.3547892E-4 
-0.5449895E-5 -0.4427336E-5 +0.6122512E-5 +0.5412232E-5 
+0.1736004E+0 -0.1918291E-1 +0.6220713E-3 -0.4414412E-5 
+0.4078606E+0 -0.6376678E-1 +0.2571961E-2 +0.3758034E+1 
-0.2287890E-1 +0.3598785E-4 -0.6182956E+0 +0.5269289E+0 
+0.6065540E+0 +0.5538999E+0 +0.4831459E+0 +0.1294910E+1 
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Appendix B. Example Control Card for Meso-Eta Variable Extraction 

This code is a hexadecimal control card that is used to extract the NPTI variables 
from the Meso-Eta model. It is used with the program unpkgrbl .x in order to degrib the 
desired variables. The control card must be present in the same directory as the program 
and called unpkgrbl .dat. To change the variables and levels extracted from the model 
column three must be changed. It is a hexadecimal description of the variable and the 
level it is on. To decipher this number please reference NCEP Office Note 388 (Dey 
1996) and the comments at the beginning of the unpkgrbl.x code. 

10000~/Thesis/A970828.dat 
~/Thesis/A970828out.dat 

00001C02 0755D4C0 21640352 61081C0F 00011800 00000000 0 
00001C02 0755D4C0 216401F4 61081C0F 00011800 00000000 0 
00001C02 0755D4C0 226401F4 61081C0F 00011800 00000000 0 
00001C02 0755D4C0 22640352 61081C0F 00011800 00000000 0 
00001C02 0755D4C0 11640352 61081C0F 00011800 00000000 0 
00001C02 0755D4C0 34640258 61081C0F 00011800 00000000 0 
00001C02 0755D4C0 34640271 61081C0F 00011800 00000000 0 
00001C02 0755D4C0 3464028A 61081C0F 00011800 00000000 0 
00001C02 0755D4C0 346402A3 61081C0F 00011800 00000000 0 
00001C02 0755D4C0 346402BC 61081C0F 00011800 00000000 0 
00001C02 0755D4C0 346402D5 61081C0F 00011800 00000000 0 
00001C02 0755D4C0 346402EE 61081C0F 00011800 00000000 0 
00001C02 0755D4C0 34640307 61081C0F 00011800 00000000 0 
00001C02 0755D4C0 34640320 61081C0F 00011800 00000000 0 
00001C02 0755D4C0 0B6401F4 61081C0F 00011800 00000000 0 
00001C02 0755D4C0 0B640352 61081C0F 00011800 00000000 0 
FFFFFFFF 00000000 00000000 00000000 00000000 00000000 0 
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Appendix C. NPTI with Meso-Eta Data 

This chart shows the calculated NPTI for Cape Canaveral and the associated 
observations. Also included is the standard deviation for the calculated average of the 
NPTI for Cape Canaveral. 

Date NPTI (%)      Obs.   Std. Dev. 

970816 57.50 1 1.732051 

970818 54.50 1 1.290994 

970819 47.25 1 0.957427 

970820 42.25 1 0.957427 
970822 40.75 1 8.995369 

970823 53.25 1 0.5 
970824 33.00 1 7.615773 
970825 55.75 1 2.217356 
970826 37.00 1 5.773503 
970828 12.25 0 0.957427 
970829 35.75 0 4.112988 
970830 48.75 1 0.5 
970831 52.50 1 1.0 
970902 49.25 1 0.5 
970903 52.50 1 1.290994 
970904 40.75 1 0.5 
970905 19.75 0 0.957427 
970906 05.00 0 0.57735 
970907 12.25 0 2.753785 
970908 06.25 0 3.40343 
970910 41.25 0.957427 
970911 45.50 1.290994 
970912 34.00 2.160247 
970913 30.75 0.5 
970914 15.75 0 1.5 
970915 11.75 3.095696 
970922 05.00 0.816497 
970923 21.75 0.5 
970924 19.00 2.44949 
970926 39.50 0.57735 
970929 28.75 0 2.986079 
970930 16.25 0 0.957427 
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Appendix D. Code for Statistics Calculations 

This is the code used to calculate the statistics for the two-by-two contingency 
tables. 

PROGRAM STATS 
REAL HR 
REAL TS 
REAL TSN 
REAL POD 
REAL FAR 
REAL BIAS 
REAL OUT 
REAL R 
REAL BS(92) 
REAL BSS 
REAL KSS 
REAL HSS 
INTEGER PER(2) 
INTEGER A 
INTEGER B 
INTEGER C 
INTEGER D 
INTEGER I 
INTEGER J 
INTEGER N 
INTEGER DA 
INTEGER H 
INTEGER RES(92) 
INTEGER DATE(92) 
CHARACTER*20 DB 

* 

111 FORMAT(I6,I2,2X,F5.2) 
112 F0RMAT(I6,4X,I1) 

OPEN(12,FILE = 'KTTS.dat',STATUS = 'OLD') 
OPEN(15,FILE = 'statistics5', STATUS = 'UNKNOWN') 

* 

DO 10 J= 1,92 
READ(12,112) DATE(J), RES(J) 

* READ(13,112) DT(J),RE(J) 
10    CONTINUE 

M = 5 
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DO 40 L = 1,2 
BSS = 0.0 
A = 0 
B = 0 
C = 0 
D = 0 
PER(l) = 30 
per(2) = 20 
OPEN(l 1.FILE - 'KTTS_OUT',STATUS = 'OLD') 
DO 30 I = 1,67 
READ(ll,lll)DA,H,OUT 
IF(H.EQ.15)THEN 
DO 20 J= 1,92 

IF(DA.EQ.DATE(J))THEN 
IF(RES(J).EQ.1)THEN 

R = 95.0 
ELSE 
R=5.0 

ENDIF 
BS(J) = (OUT - R)*(OUT - R) 
IF((OUT.GE.PER(L))AND.(RES(J).EQ.l))THEN 

A = A+1 
ELSEIF((OUT.GE.PER(L))AND.(RES(J).EQ.0))THEN 

B = B + 1 
ELSEIF((OUT.LT.PER(L))AND.(RES(J).EQ.l))THEN 

C = C + 1 
ELSEif((OUT.LT.PER(L))AND.(RES(J).EQ.0))THEN 

D = D+1 
ELSE 

GOTO 20 
ENDIF 
BSS = BSS + BS(J) 

ELSE 
GOTO 20 

ENDIF 
20      CONTINUE 

ENDIF 
30    CONTINUE 

N=A+B+C+D 
HR = ((FLOAT(A) + FLOAT(D))/FLOAT(N))* 100.0 
TS = (FLOAT(A)/(FLOAT(A) + FLOAT(B) + FLOAT(C)))* 100.0 
TSN = (FLOAT(D)/(FLOAT(D) + FLOAT(B) + FLO AT(C)))* 100.0 
POD = (FLOAT(A)/(FLOAT(A) + FLOAT(C)))* 100.0 
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PODN = (FLOAT(D)/(FLOAT(B) + FLOAT(D)))* 100.0 
FAR = (FLOAT(B)/(FLOAT(A) + FLOAT(B)))* 100.0 
FARN = (FLOAT(C)/(FLOAT(C) + FLOAT(D)))* 100.0 
BIAS = ((FLOAT(A) + FLOAT(B))/(FLOAT(A) + FLOAT(C))) 
HSS = 2*((FLOAT(A)*FLOAT(D))-(FLOAT(B)*FLOAT(C)))/ 

&      ((FLOAT(A) + FLOAT(C))*(FLOAT(C) + FLOAT(D)) 
&      +(FLOAT(A) + FLOAT(B))*(FLOAT(B) + FLOAT(D))) 

KSS = ((FLOAT(A)*FLOAT(D))-(FLOAT(B)*FLOAT(C)))/ 
&       ((FLOAT(A) + FLOAT(C))*(FLOAT(B) + FLOAT(D))) 

BSS = BSS/N 
IF(BIAS.GT.(1.0))THEN 

DB = ',   OVERFORECASTING' 
ELSEIF(BIAS.LT.(1.0))THEN 

DB = ',   UNDERFORECASTING' 
ELSE 

DB = ',   UNBIASED' 
ENDIF 

KTTS statistics from output of contingency table.' 
with a percent of, per(L),'.' 

A =',A/, B =',B,', C =',C,', D =',D,', N =',N 
HIT RATE =',HR,'%' 
THREAT SCORE =',TS,'%' 
THREAT SCORE NO =',TSN,'%' 
PROB. OF DETECTION =',POD,'%* 
PROB. OF DET. NO =',PODN,'%' 
FALSE-ALARM RATE =',FAR/%' 
FALSE-ALARM RATE NO =',FARN,'%* 
BIAS =',BIAS,DB 
HSS = ',HSS 
KSS = *,KSS 
BSS = ',BSS 

WRITE(15,* 
WRITE(15,* 
WRITE(15,* 
WRITE(15,* 
WRITE(15,* 
WRITE(15,* 
WRITE(15,* 
WRITE(15,* 
WRITE(15,* 
WRITE(15,* 
WRITE(15,* 
WRITE(15,* 
WRITE(15,* 
WRITE(15,* 
WRITE(15,* 

close (11) 
40    CONTINUE 

END 
*23456789012345678901234567890123456789012345678901234567890123456789012 
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Appendix E. Segmented Climatological Statistical Results 

This is the statistical output to the segmented data from the 20 years of 
climatology. It is divided into the four major quadrants for comparison of the NPTFs 
forecast ability in each wind direction. 

1) Northeast Statistics 

KTTS statistics from output of contingency table with 40% as the NPTI cutoff. 
A = 40, B = 73, C = 80, D = 580, N = 773 
HIT RATE =    80.2070% 
THREAT SCORE =   20.7254% 
THREAT SCORE NO =   79.1269% 
PROB. OF DETECTION =   33.3333% 
FALSE-ALARM RATE =   64.6018% 
BIAS=  0.941667,   UNDERFORECASTING 

KTTS statistics from output of contingency table with 45% as the NPTI cutoff. 
A = 30, B = 46, C = 90, D = 607, N = 773 
HIT RATE =    82.4062% 
THREAT SCORE =    18.0723% 
THREAT SCORE NO =   81.6958% 
PROB. OF DETECTION =   25.0000% 
FALSE-ALARM RATE =   60.5263% 
BIAS=  0.633333,  UNDERFORECASTING 

KTTS statistics from output of contingency table with 50% as the NPTI cutoff. 
A= 22, B= 27, C= 98, D= 626,N= 773 
HIT RATE =    83.8292% 
THREAT SCORE =    14.9660% 
THREAT SCORE NO =   83.3555% 
PROB. OF DETECTION =    18.3333% 
FALSE-ALARM RATE =    55.1020% 
BIAS=  0.408333,  UNDERFORECASTING 

KTTS statistics from output of contingency table with 55% as the NPTI cutoff. 
A= 14,B= 19, C= 106, D= 634,N= 773 
HIT RATE =    83.8292% 
THREAT SCORE =   10.07194% 
THREAT SCORE NO =    83.5310% 
PROB. OF DETECTION =    11.6667% 
FALSE-ALARM RATE =    57.5758% 
BIAS=  0.275000,  UNDERFORECASTING 
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2) Northwest Statistics 

KTTS statistics from output of contingency table with 40% as the NPTI cutoff. 
A= 101, B= 87, C= 51, D= 185, N= 424 
HIT RATE =   67.4528% 
THREAT SCORE =   42.2594% 
THREAT SCORE NO =    57.2755% 
PROB. OF DETECTION =   66.4474% 
FALSE-ALARM RATE =   46.2766% 
BIAS=    1.23684,   OVERFORECASTING 

KTTS statistics from output of contingency table with 45% as the NPTI cutoff. 
A = 77, B = 65, C = 75, D = 207, N = 424 
HIT RATE =   66.9811% 
THREAT SCORE =   35.4839% 
THREAT SCORE NO =   59.6542% 
PROB. OF DETECTION =    50.6579% 
FALSE-ALARM RATE =   45.7746% 
BIAS=  0.934211,   UNDERFORECASTING 

KTTS statistics from output of contingency table with 50% as the NPTI cutoff. 
A= 60,B= 45,C= 92,D= 227,N= 424 
HIT RATE =   67.6887% 
THREAT SCORE =   30.4569% 
THREAT SCORE NO =   62.3626% 
PROB. OF DETECTION =   39.4737% 
FALSE-ALARM RATE =   42.8571% 
BIAS=  0.690789,  UNDERFORECASTING 

KTTS statistics from output of contingency table with 55% as the NPTI cutoff. 
A= 47, B= 33, C= 105, D= 239,N= 424 
HIT RATE =   67.4528% 
THREAT SCORE =   25.4054% 
THREAT SCORE NO =   63.3952% 
PROB. OF DETECTION =   30.9211% 
FALSE-ALARM RATE =   41.2500% 
BIAS=   0.526316,   UNDERFORECASTING 
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3) Southeast Statistics 

KTTS statistics from output of contingency table with 40% as the NPTI cutoff. 
A= 206, B= 241, C= 103, D= 526, N= 1076 
HIT RATE =   68.0297% 
THREAT SCORE =   37.4545% 
THREAT SCORE NO =   60.4598% 
PROB. OF DETECTION =   66.6667% 
FALSE-ALARM RATE =   53.9150% 
BIAS=    1.44660,   OVERFORECASTING 

KTTS statistics from output of contingency table with 45% as the NPTI cutoff. 
A= 165, B= 183, C= 144, D= 584, N= 1076 
HIT RATE =   69.6097% 
THREAT SCORE =   33.5366% 
THREAT SCORE NO =   64.1054% 
PROB. OF DETECTION =    53.3981% 
FALSE-ALARM RATE =    52.5862% 
BIAS=    1.12621,   OVERFORECASTING 

KTTS statistics from output of contingency table with 50% as the NPTI cutoff. 
A= 129, B= 132, C= 180, D= 635, N= 1076 
HIT RATE =   71.0037% 
THREAT SCORE =   29.2517% 
THREAT SCORE NO =   67.0539% 
PROB. OF DETECTION =    41.7476% 
FALSE-ALARM RATE =    50.5747% 
BIAS=   0.844660,   UNDERFORECASTING 

KTTS statistics from output of contingency table with 55% as the NPTI cutoff. 
A = 96, B = 93, C = 213, D = 674, N = 1076 
HIT RATE =   71.5613% 
THREAT SCORE =   23.8806% 
THREAT SCORE NO =   68.7755% 
PROB. OF DETECTION =   31.0680% 
FALSE-ALARM RATE =   49.2063% 
BIAS=   0.611650,   UNDERFORECASTING 
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4) Southwest Statistics 

KTTS statistics from output of contingency table with 40% as the NPTI cutoff. 
A= 628, B= 399, C= 83, D= 167, N= 1277 
HIT RATE =   62.2553% 
THREAT SCORE =   56.5766% 
THREAT SCORE NO =   25.7319% 
PROB. OF DETECTION =   88.3263% 
FALSE-ALARM RATE =   38.8510% 
BIAS=    1.44444,   OVERFORECASTING 

KTTS statistics from output of contingency table with 45% as the NPTI cutoff. 
A= 573, B= 328, C= 138, D- 238, N= 1277 
HIT RATE =   63.5082% 
THREAT SCORE =   55.1492% 
THREAT SCORE NO =   33.8068% 
PROB. OF DETECTION =    80.5907% 
FALSE-ALARM RATE =   36.4040% 
BIAS=    1.26723,   OVERFORECASTING 

KTTS statistics from output of contingency table with 50% as the NPTI cutoff. 
A = 504, B = 276, C = 207, D = 290, N = 1277 
HIT RATE =   62.1770% 
THREAT SCORE =    51.063 8% 
THREAT SCORE NO =    37.5162% 
PROB. OF DETECTION =   70.8861% 
FALSE-ALARM RATE =   35.3846% 
BIAS=    1.09705,   OVERFORECASTING 

KTTS statistics from output of contingency table with 55% as the NPTI cutoff. 
A= 440, B= 212, C= 271, D= 354, N= 1277 
HIT RATE =    62.1770% 
THREAT SCORE =   47.6706% 
THREAT SCORE NO =   42.2939% 
PROB. OF DETECTION =   61.8847% 
FALSE-ALARM RATE =   32.5153% 
BIAS=  0.917018,  UNDERFORECASTING 
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Appendix F. Entire Climatological Statistic Results 
Overall 

Percent HR TS TSN     POD PODN FAR FARN Bias 
5 40.36 40.36 0     100 0 59.64 0 2.4779 
6 48.84 43.87 14.77 99.06 14.87 55.95 4.1 2.2488 
7 49.34 44.08 15.65 98.97 15.76 55.71 4.25 2.2347 
8 50.13 44.47 16.97 98.97 17.09 55.32 3.93 2.215 
9 50.89 44.76 18.44 98.59 18.62 54.96 4.87 2.1887 

10 51.31 44.87 19.33 98.22 19.57 54.76 5.81 2.1709 
11 52.07 45.24 20.64 98.12 20.9 54.37 5.73 2.1502 
12 52.67 45.55 21.64 98.12 21.92 54.05 5.48 2.1352 
13 53.39 45.91 22.88 98.03 23.19 53.66 5.44 2.1155 
14 54.15 46.25 24.28 97.75 24.65 53.26 5.83 2.0911 
15 54.64 46.44 25.23 97.46 25.67 52.99 6.26 2.0732 
16 55.51 46.88 26.76 97.28 27.26 52.5 6.33 2.0479 
17 56.42 47.37 28.3 97.18 28.84 51.97 6.2 2.0235 
18 57.22 47.71 29.83 96.71 30.5 51.51 6.8 1.9944 
19 57.9 48.06 31.04 96.53 31.77 51.09 6.89 1.9737 
20 58.58 48.32 32.41 95.96 33.29 50.68 7.58 1.9455 
21 59.49 48.8 34.01 95.68 35.01 50.1 7.71 1.9174 
22 59.83 48.89 34.77 95.21 35.9 49.88 8.28 1.8995 
23 60.14 49.01 35.38 94.93 36.59 49.68 8.57 1.8864 
24 60.7 49.22 36.22 94.37 37.93 49.29 9.13 1.861 
25 61.12 49.31 37.48 93.71 39.07 49 9.82 1.8376 
26 61.77 49.63 38.66 93.33 40.41 48.55 10.04 1.8141 
27 62.75 50.15 40.42 92.86 42.38 47.84 10.23 1.7803 
28 63.77 50.72 42.24 92.39 44.41 47.07 10.38 1.7455 
29 64.57 51 43.88 91.36 46.44 46.42 11.18 1.7052 
30 65.4 51.49 45.33 90.99 48.09 45.74 11.25 1.677 
31 65.78 51.37 46.41 89.58 49.68 45.36 12.43 1.6394 
32 66.2 51.36 47.44 88.45 51.14 44.94 13.25 1.6066 
33 66.65 51.35 48.54 87.23 52.73 44.47 14.08 1.5709 
34 67.37 51.63 49.94 86.29 54.57 43.76 14.53 1.5343 
35 68.47 52.16 51.96 85.16 57.18 42.63 14.93 1.4845 
36 68.89 52.1 52.98 83.85 58.77 42.09 15.68 1.4479 
37 69.31 52.18 53.85       83 60.04 41.57 16.07 1.4207 
38 70.1 52.5 55.35 81.88 62.13 40.6 16.48 1.3784 
39 70.41 52.44 56.07 80.85 63.34 40.13 16.99 1.3502 
40 70.29 51.72 56.42 78.87 64.49 39.96 18.15 1.3136 
41 70.63 51.56 57.28 77.46 66.01 39.34 18.76 1.277 
42 70.63 50.61 58 74.55 67.98 38.83 20.21 1.2188 
43 70.9 50.1 58.88 72.39 69.89 38.07 21.09 1.169 
44 70.97 49.47 59.45 70.42 71.35 37.55 21.91 1.1277 
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Overall cont. 

Percent HR TS TSN   POD PODN FAR FARN BIAS 
45 70.86 48.7 59.72 68.54 72.43 37.29 22.71 1.093 
46 71.2 48.44 60.52 67.04 74.02 36.42 23.15 1.0545 
47 71.28 47.8 61.03 65.16 75.41 35.8 23.81 1.015 
48 70.63 46.14 60.76 62.35 76.24 36.03 25.05 0.9746 
49 70.37 45.12 60.82 60.38 77.13 35.89 25.79 0.9418 
50 70.56 44.54 61.44 58.59 78.65 35 26.27 0.9014 
51 70.37 43.33 61.69 56.15 79.99 34.5 27.06 0.8573 
52 70.48 42.68 62.17 54.46 81.32 33.64 27.48 0.8207 
53 70.1 41.25 62.16 52.02 82.34 33.41 28.28 0.7812 
54 70.25 40.58 62.67 50.33 83.74 32.32 28.64 0.7437 
55 70.06 39.69 62.72 48.83 84.43 32.02 29.08 0.7183 
56 70.14 39.06 63.07 47.42 85.51 31.11 29.38 0.6883 
57 69.84 37.86 63.05 45.54 86.28 30.81 29.93 0.6582 
58 69.76 37.02 63.23 44.04 87.17 30.1 30.28 0.63 
59 69.69 35.69 63.55 41.69 88.63 28.73 30.8 0.585 
60 69.23 34.2 63.37 39.62 89.26 28.6 31.4 0.5549 
61 68.78 32.62 63.21 37.46 89.96 28.37 31.99 0.523 
62 68.44 31.27 63.14 35.59 90.66 27.95 32.47 0.4939 
63 68.13 29.92 63.11 33.71 91.42 27.33 32.91 0.4639 
64 67.87 28.56 63.13 31.83 92.25 26.46 33.33 0.4329 
65 67.49 27.04 63.03 29.86 92.95 25.87 33.8 0.4028 
66 67.49 26.48 63.18 29.01 93.52 24.82 33.93 0.3859 
67 67.15 25.19 63.06 27.42 94.03 24.35 34.31 0.3624 
68 67.18 24.3 63.32   26.1 94.98 22.13 34.49 0.3352 
69 66.84 23.04 63.19   24.6 95.43 21.56 34.84 0.3136 
70 66.69 21.8 63.28      23 96.25 19.41 35.12 0.2854 
71 66.43 20.75 63.19 21.78 96.63 18.6 35.39 0.2676 
72 66.28 20.11 63.15 21.03 96.89 17.95 35.55 0.2563 
73 65.86 18.97 62.89 19.81 97.01 18.22 35.87 0.2423 
74 65.52 18.01 62.69 18.78 97.14 18.37 36.13 0.23 
75 65.37 17.13 62.69 17.75 97.59 16.74 36.32 0.2131 
76 65.14 16.36 62.59    16.9 97.78 16.28 36.51 0.2019 
77 64.72 15.21 62.34 15.68 97.9 16.5 36.82 0.1878 
78 64.15 13.69 61.99 14.08 98.03 17.13 37.23 0.17 
79 63.66 12.5 61.67 12.86 98.03 18.42 37.56 0.1577 
80 63.09 11.05 61.32 11.32 98.09 19.87 37.94 0.1418 
81 62.68 9.7 61.1 10.05 98.28 20.15 38.24 0.1258 
82 62.49 9.26 60.99   9.48 98.35 20.47 38.38 0.1192 
83 62.22 8.36 60.87   8.54 98.54 20.18 38.57 0.107 
84 62.03 7.56 60.81      7.7 98.79 18.81 38.73 0.0948 
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Overall cont. 2 

Percent HR TS TSN POD PODN FAR FARN BIAS 
85 61.92 6.86 60.82 6.95 99.11 15.91 38.85 0.0826 
86 61.69 6.3 60.68 6.38 99.11 17.07 38.99 0.077 
87 61.58 5.76 60.65 5.82 99.3 15.07 39.09 0.0685 
88 61.27 5.019 60.46 5.07 99.3 16.92 39.28 0.061 
89 61.18 4.66 60.45 4.69 99.43 15.25 39.34 0.0554 
90 61.01 4.19 60.33 4.23 99.43 16.67 39.46 0.0507 
91 60.89 3.91 60.26 3.94 99.43 17.65 39.53 0.0479 
92 60.86 3.55 60.28 3.57 99.62 13.64 39.58 0.0413 
93 60.63 2.99 60.15 3 99.62 15.79 39.72 0.0357 
94 60.55 2.71 60.12 2.72 99.68 14.71 39.77 0.0319 

May 

Percent HR TS TSN POD PODN FAR FARN Bias 
25 71.08 45.87 61.7 90.98 63.75 51.95 4.95 1.8934 
26 71.74 46.44 62.57 90.98 64.65 51.32 4.89 1.8689 
27 73.29 47.84 64.62 90.98 66.77 49.77 4.74 1.8115 
28 75.06 49.33 67.06 90.16 69.49 47.87 4.96 1.7295 
29 75.72 49.07 68.3 86.89 71.6 47 6.32 1.6393 
30 76.82 50 69.83 86.07 73.41 45.6 6.54 1.582 
31 77.04 49.51 70.37 83.61 74.62 45.16 7.49 1.5246 
32 77.92 50.25 71.59 82.79 76.13 43.89 7.69 1.4754 
33 77.26 48.5 71.07 79.51 76.44 44.57 8.99 1.4344 
34 79.03 50.52 73.31 79.51 78.85 41.92 8.74 1.3689 
35 79.03 49.74 73.54 77.05 79.76 41.61 9.59 1.3197 
36 80.35 51.1 75.28 76.23 81.87 39.22 9.67 1.2541 
37 81.02 51.41 76.24 74.59 83.38 37.67 10.1 1.1967 
38 81.02 50.86 76.37 72.95 83.99 37.32 10.61 1.1639 
39 81.24 50.58 76.78 71.31 84.89 36.5 11.08 1.123 
40 81.46 50.3 77.17 69.67 85.8 35.61 11.53 1.082 
41 82.12 50.91 78.05 68.85 87.01 33.86 11.66 1.041 
42 83 51.57 79.25 67.21 88.82 31.09 11.98 0.9754 
43 82.34 49.37 78.67 63.93 89.12 31.58 12.98 0.9344 
44 81.9 47.1 78.42 59.84 90.03 31.13 14.12 0.8689 
45 81.9 46.41 78.53 58.2 90.63 30.39 14.53 0.8361 
46 82.56 46.62 79.43 56.56 92.15 27.37 14.8 0.7787 
47 82.34 45.58 79.27 54.92 92.45 27.17 15.24 0.7541 
48 81.68 43.54 78.66 52.46 92.45 28.09 15.93 0.7295 
49 81.68 43.15 78.72 51.64 92.75 27.59 16.12 0.7131 
50 81.24 40.97 78.43 48.36 93.35 27.16 16.94 0.6639 
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May cont. 

Percent HR TS TSN POD PODN FAR FARN BIAS 
51 81.24 39.29 78.64 45.08 94.56 27.16 17.63 0.5984 
52 80.79 36.96 78.36 41.8 95.17 23.88 18.39 0.5492 
53 80.13 34.31 77.83 38.52 95.47 24.19 19.18 0.5082 
54 80.13 33.33 77.94 36.89 96.07 22.41 19.49 0.4754 
55 79.91 32.09 77.8 35.25 96.37 21.82 19.85 0.4508 
56 79.47 29.55 77.54 31.97 96.98 20.41 20.54 0.4016 
57 79.03 27.48 77.22 29.51 97.28 20 21.08 0.3689 
58 78.15 23.85 76.54 25.41 97.58 20.51 21.98 0.3197 
59 77.48 21.54 76 22.95 97.58 22.22 22.54 0.2951 
60 77.48 20.93 76.06 22.13 97.89 20.59 22.67 0.2787 
61 76.82 18.6 75.52 19.67 97.89 22.58 23.22 0.2541 
62 76.6 17.19 75.41 18.03 98.19 21.43 23.53 0.2295 
63 76.38 15.08 75.35 15.57 98.79 17.39 23.95 0.1885 
64 76.16 13.6 75.23 13.93 99.09 15 24.25 0.1639 
65 75.5 11.2 74.72 11.48 99.09 17.65 24.77 0.1393 
66 75.28 10.4 74.55 10.66 99.09 18.75 24.94 0.1311 
67 75.06 9.6 74.38 9.84 99.09 20 25.11 0.123 
68 75.06 9.6 74.38 9.84 99.09 20 25.11 0.123 
69 75.06 8.13 74.49 8.2 99.7 9.09 25.34 0.0902 
70 74.83 7.32 74.32 7.38 99.7 10 25.51 0.082 
71 74.83 7.32 74.32 7.38 99.7 10 25.51 0.082 
72 74.83 7.32 74.32 7.38 99.7 10 25.51 0.082 
73 74.61 6.5 74.16 6.56 99.7 11.11 25.68 0.0738 
74 74.61 5.74 74.22 5.74 100 0 25.78 0.0574 
75 74.61 5.74 74.22 5.74 100 0 25.78 0.0574 
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June 

Percent HR TS TSN POD PODN   FAR FARN Bias 
25 63.85 54.46 36.33 96.92 37.23 44.58 6.25 1.7489 
26 65.03 55.28 38.41 96.92 39.36 43.73 5.93 1.7225 
27 65.82 55.84 39.79 96.92 40.78 43.15 5.74 1.7049 
28 66.21 56.01 40.69 96.48 41.84 42.82 6.35 1.6872 
29 66.99 56.36 42.47 95.59 43.97 42.13 7.46 1.652 
30 67.58 56.81 43.49 95.59 45.04 41.67 7.3 1.6388 
31 67.58 56.58 43.88 94.71 45.74 41.58 8.51 1.6212 
32 67.98 56.88 44.56 94.71 46.45 41.26 8.39 1.6123 
33 68.57 56.99 46.13 93.39 48.58 40.62 9.87 1.5727 
34 68.76 57.03 46.64 92.95 49.29   40.4 10.32 1.5595 
35 70.53 58.33 49.83 92.51 52.84 38.78 10.24 1.511 
36 71.51 59.04 51.67 92.07 54.96    37.8 10.4 1.4802 
37 71.91 59.26 52.49 91.63 56.03 37.35 10.73 1.4626 
38 73.67 60.7 55.63 91.19 59.57 35.51 10.64 1.4141 
39 74.07 60.95 56.44 90.75 60.64 35.02 10.94 1.3965 
40 74.07 60.48 57 88.99 62.06 34.63 12.5 1.3612 
41 73.87 60.06 56.96 88.11 62.41 34.64 13.3 1.348 
42 73.87 59.57 57.51 86.34 63.83 34.23 14.69 1.3128 
43 74.07 59.38 58.23 85.02 65.25 33.68 15.6 1.2819 
44 74.26 59.44 58.68 84.58 65.96 33.33 15.84 1.2687 
45 74.66 59.56 59.56 83.7 67.38 32.62 16.3 1.2423 
46 75.05 59.68 60.44 82.82 68.79 31.88 16.74 1.2159 
47 75.25 59.49 61.11 81.5 70.21 31.23 17.5 1.185 
48 74.85 58.58 60.98 79.74 70.92 31.18 18.7 1.1586 
49 74.46 57.65 60.84 77.97 71.63 31.13 19.84 1.1322 
50 74.46 56.95 61.42 75.77 73.4 30.36 20.99 1.0881 
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June cont. 

Percent HR TS TSN POD PODN   FAR FARN BIAS 
51 73.87 55.22 61.45 72.25 75.18 29.91 22.91 1.0308 
52 73.87 54.61 61.89 70.48 76.6   29.2 23.67 0.9956 
53 73.48 53.45 61.86 68.28 77.66   28.9 24.74 0.9604 
54 73.48 52.96 62.18 66.96 78.72   28.3 25.25 0.9339 
55 73.48 52.63 62.4 66.08 79.43 27.88 25.58 0.9163 
56 74.07 52.69 63.54 64.76 81.56 26.13 25.81 0.8767 
57 73.48 51.26 63.22 62.56 82.27 26.04 26.81 0.8458 
58 74.07 51.65 64.13 62.11 83.69   24.6 26.71 0.8238 
59 73.67 50.37 64.08 59.91 84.75 24.02 27.58 0.7885 
60 72.69 48.33 63.32 57.27 85.11 24.42 28.78 0.7577 
61 72.69 47.74 63.61 55.95 86.17 23.49 29.15 0.7313 
62 72.5 46.77 63.73 54.19 87.23 22.64 29.71 0.7004 
63 72.1 45.17 63.78 51.54 88.65 21.48 30.56 0.6564 
64 71.71 43.97 63.64 49.78 89.36 20.98 31.15 0.63 
65 69.94 40 62.41 44.93 90.07 21.54 32.98 0.5727 
66 70.33 40.08 62.99 44.49 91.13 19.84 32.9 0.5551 
67 69.94 38.8 62.86 42.73 91.84 19.17 33.42 0.5286 
68 69.55 36.73 63.01 39.65 93.62 16.67 34.16 0.4758 
69 68.57 34.16 62.44 36.56 94.33 16.16 35.12 0.4361 
70 67.39 30.54 61.93 32.16 95.74 14.12 36.32 0.3744 
71 66.99 29.11 61.82 30.4 96.45 12.66 36.74 0.348 
72 66.21 27.12 61.35 28.19 96.81 12.33 37.39 0.3216 
73 65.62 25.85 60.94 26.87 96.81 12.86 37.81 0.3084 
74 65.23 24.68 60.75 25.55 97.16 12.12 38.15 0.2907 
75 64.64 23.08 60.44 23.79 97.52 11.48 38.62 0.2687 
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July 

Percent HR TS      TSN POD PODN FAR FARN Bias 
25 64.37 57.11 32.21 96.07 33.45 41.52 10.28 1.6429 
26 65.26 57.63 34.11 95.71 35.54 40.84 10.53 1.6179 
27 65.61 57.79       35 95.36 36.59 40.53 11.02 1.6036 
28 66.31 58.21 36.54 95 38.33 39.95 11.29 1.5821 
29 67.02 58.72 37.87 95 39.72 39.41 10.94 1.5679 
30 67.2 58.67 38.61 94.29 40.77 39.17 12.03 1.55 
31 67.9 58.92 40.52 93.21 43.21 38.44 13.29 1.5143 
32 67.72 58.41 40.97 91.79 44.25 38.37 15.33 1.4893 
33 68.25 58.81 41.94 91.79 45.3 37.92 15.03 1.4786 
34 68.78 59.03 43.27 91.07 47.04 37.35 15.63 1.4536 
35 68.61 58.6 43.49 90 47.74 37.31 16.97 1.4357 
36 69.31 59.06 44.94 89.64 49.48 36.62 16.96 1.4143 
37 69.49 59   45.6 88.93 50.52 36.32 17.61 1.3964 
38 69.67 59.05 46.08 88.57 51.22 36.08 17.88 1.3857 
39 70.02 59.23 46.88 88.21 52.26 35.68 18.03 1.3714 
40 70.19 59.28 47.35 87.86 52.96 35.43 18.28 1.3607 
41 70.72 59.61 48.45 87.5 54.36 34.84 18.32 1.3429 
42 70.02 58.33 48.33 85 55.4 34.97 20.9 1.3071 
43 71.08 59 50.45 84.29 58.19 33.71 20.85 1.2714 
44 71.78 59.18 52.24 82.86 60.98 32.56 21.52 1.2286 
45 72.13 59.28 53.12 82.14 62.37 31.95 21.83 1.2071 
46 71.78 58.66 52.94 81.07 62.72 32.04 22.75 1.1929 
47 71.6 58.07    53.2 79.64 63.76 31.8 23.75 1.1679 
48 71.25 56.99 53.56 77.14 65.51 31.43 25.4 1.125 
49 71.25 56.65 53.95 76.07 66.55 31.07 25.97 1.1036 
50 71.43 56.45 54.62 75 67.94 30.46 26.42 1.0786 
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July cont. 

Percent HR TS TSN POD PODN    FAR FARN Bias 
51 71.25 55.83 54.85 73.57 68.99 30.17 27.21 1.0536 
52 71.78 56.04 55.92 72.86 70.73 29.17 27.24 1.0286 
53 71.6 55.4 56.13 71.43 71.78 28.83 27.97 1.0036 
54 71.96 55.34 57.03 70.36 73.52 27.84 28.23 0.975 
55 72.49 55.68 57.95 70 74.91 26.87 28.09 0.9571 
56 72.49 55.56 58.06 69.64 75.26 26.69 28.24 0.95 
57 72.49 55.17 58.4 68.57 76.31 26.15 28.66 0.9286 
58 73.19 55.69 59.57 68.21 78.05   24.8 28.43 0.9071 
59 73.02 54.87 59.84 66.43 79.44 24.08 29.19 0.875 
60 72.66 54 59.74 65 80.14 23.85 29.88 0.8536 
61 72.49 53.29 59.9 63.57 81.18 23.28 30.45 0.8286 
62 72.13 52.41 59.8 62.14 81.88 23.01 31.09 0.8071 
63 71.78 51.22 59.9 60 83.28 22.22 31.91 0.7714 
64 71.96 50.93 60.45 58.93 84.67 21.05 32.12 0.7464 
65 72.13 51.08 60.7 58.93 85.02 20.67 32.03 0.7429 
66 71.78 50.16 60.59 57.5 85.71    20.3 32.6 0.7214 
67 71.25 48.9 60.34 55.71 86.41       20 33.33 0.6964 
68 70.72 47.47 60.19 53.57 87.46 19.35 34.12 0.6643 
69 70.37 46.67 60 52.5 87.8 19.23 34.55 0.65 
70 70.37 45.81 60.47 50.71 89.55 17.44 34.94 0.6143 
71 70.02 44.81 60.37 49.29 90.24 16.87 35.41 0.5929 
72 70.19 44.77 60.7 48.93 90.94 15.95 35.4 0.5821 
73 69.49 43.09 60.32 46.79 91.64 15.48 36.17 0.5536 
74 68.25 40.79 59.37 44.29 91.64 16.22 37.23 0.5286 
75 67.2 38.61 58.67 41.79 92 16.43 38.17 0.5 
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August 

Percent HR TS      TSN    POD PODN FAR FARN Bias 
25 51.3 46.78 14.85 91.14 16.01 50.99 32.88 1.8598 
26 51.13 46.39 15.32 90.04 16.67 51.1 36.62 1.8413 
27 51.65 46.35 16.96 88.93 18.63 50.82 34.48 1.8081 
28 52.51 46.8 18.45 88.93 20.26 50.31 32.61 1.7897 
29 53.21 46.75 20.59 87.45 22.88 49.89 32.69 1.7454 
30 53.73 46.92 21.71 87.08 24.18 49.57 32.11 1.7269 
31 54.42 46.98 23.55 85.98 26.47 49.13 31.93 1.69 
32 54.25 46.34 24.36 84.13 27.78 49.22 33.59 1.6568 
33 55.29 46.58   26.7 83.03 30.72 48.51 32.86 1.6126 
34 55.63 46.44 27.89 81.92 32.35 48.25 33.11 1.583 
35 57.19 47 31.01 80.81 36.27 47.1 31.9 1.5277 
36 56.5 45.91 31.04   78.6 36.93 47.54 33.92 1.4982 
37 57.19 46.3 32.14   78.6 38.24 47.01 33.14 1.4834 
38 56.85 45.15 33.06 75.65 40.2 47.17 34.92 1.4317 
39 57.02 44.89 33.87 74.54 41.5 46.98 35.2 1.4059 
40 56.67 43.82 34.56 71.96 43.14 47.15 36.54 1.3616 
41 57.02 43.25 36.08 69.74 45.75 46.76 36.94 1.31 
42 57.37 42.25 38.04 66.42 49.35 46.27 37.6 1.2362 
43 57.71 41.9 39.15 64.94 51.31 45.85 37.7 1.1993 
44 57.71 40.92   40.2 62.36 53.59 45.66 38.35 1.1476 
45 56.5 38.93 39.81 59.04 54.25 46.67 40.07 1.107 
46 57.19 38.56 41.47   57.2 57.19 45.8 39.86 1.0554 
47 57.02 37.69 41.92 55.35 58.5 45.85 40.33 1.0221 
48 56.5 36.13   42.3   52.4 60.13 46.21 41.21 0.9742 
49 55.29 33.85 42.02 48.71 61.11 47.41 42.64 0.9262 
50 55.81 33.59 43.08   47.6 63.07 46.69 42.39 0.893 
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August cont. 

Percent HR TS   TSN POD PODN FAR FARN Bias 
51 56.33 32.98 44.37 45.76 65.69 45.85 42.24 0.845 
52 56.67 32.61 45.18 44.65 67.32 45.25 42.13 0.8155 
53 56.85 31.22 46.34 41.7 70.26 44.61 42.36 0.7528 
54 56.5 29.49 46.82 38.75 72.22 44.74 42.89 0.7011 
55 55.63 27.68 46.56 36.16 72.88 45.86 43.69 0.6679 
56 55.63 26.65 47.11 34.32 74.51 45.61 43.84 0.631 
57 55.63 25.36 47.76 32.1 76.47 45.28 44.02 0.5867 
58 54.94 23.53 47.69 29.52 77.45 46.31 44.63 0.5498 
59 55.29 21.34 49.11 25.83 81.37 44.88 44.67 0.4686 
60 54.25 18.77 48.84 22.51 82.35 46.96 45.45 0.4244 
61 53.73 16.56 49.05 19.56 83.99 48.04 45.89 0.3764 
62 53.03 14.24 49.06 16.61 85.29 50 46.41 0.3321 
63 52.86 13.38 49.16 15.5 85.95 50.59 46.54 0.3137 
64 52.51 11.33 49.45 12.92 87.58 52.05 46.83 0.2694 
65 52.69 9.9 50.09 11.07 89.54 51.61 46.8 0.2288 
66 52.86 9.33 50.46 10.33 90.52 50.88 46.73 0.2103 
67 52.51 7.74 50.54 8.49 91.5 53.06 46.97 0.1808 
68 53.21 7.53 51.35 8.12 93.14 48.84 46.63 0.1587 
69 52.86 6.21 51.34 6.64 93.79 51.35 46.85 0.1365 
70 53.38 5.94 51.96 6.27 95.1 46.88 46.61 0.1181 
71 53.03 4.58 51.95 4.8 95.75 50 46.82 0.0959 
72 53.03 4.24 52.04 4.43 96.08 50 46.84 0.0886 
73 52.69 3.53 51.85 3.69 96.08 54.55 47.03 0.0812 
74 52.69 3.53 51.85 3.69 96.08 54.55 47.03 0.0812 
75 53.55 3.6 52.73 3.69 97.71 41.18 46.61 0.0627 
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September 

Percent HR TS       TSN   POD PODN FAR FARN Bias 
25 57.22 39.84 40.31 91.52 41.85 58.63 8.33 2.2121 
26 57.97 40.27 41.36 91.52 42.93 58.17 8.14 2.1879 
27 59.85 41.21 44.13 90.91 45.92 57.02 8.15 2.1152 
28 61.35 41.81 46.49   89.7 48.64 56.08 8.67 2.0424 
29 62.48 42.36 48.19 89.09 50.54 55.32 8.82 1.9939 
30 64.35 43.62 50.78 89.09 53.26 53.92 8.41 1.9333 
31 64.54 43.07 51.54 86.67 54.62 53.87 9.87 1.8788 
32 65.85 43.65 53.57 85.45 57.07 52.84 10.26 1.8121 
33 66.42 43.53 54.68 83.64 58.7 52.41 11.11 1.7576 
34 67.35 43.51 56.39 81.21 61.14 51.62 12.11 1.6788 
35 69.61 44.9   59.6      80 64.95 49.43 12.13 1.5818 
36 69.61 43.94   60.1 76.97 66.3 49.4 13.48 1.5212 
37 69.79 43.31 60.73 74.55 67.66 49.17 14.43 1.4667 
38 72.23 45.39   63.9 74.55 71.2 46.29 13.82 1.3879 
39 72.61 44.91 64.73 72.12 72.83 45.66 14.65 1.3273 
40 72.05 42.91 64.61 67.88 73.91 46.15 16.31 1.2606 
41 72.42 42.13 65.49 64.85 75.82 45.41 17.21 1.1879 
42 72.05 39.68 65.75 59.39 77.72 45.56 18.98 1.0909 
43 72.23 37.29 66.74 53.33 80.71 44.65 20.59 0.9636 
44 72.05 36.05 66.82 50.91 81.52 44.74 21.26 0.9212 
45 72.05 34.65 67.18 47.88 82.88 44.37 21.99 0.8606 
46 72.42 33.78   67.9 45.45 84.51 43.18 22.44 0.8 
47 73.17 32.55 69.18 41.82 87.23 40.52 23.02 0.703 
48 71.86 28.91 68.22 36.97 87.5 42.99 24.41 0.6485 
49 72.23 28.16 68.84 35.15 88.86 41.41 24.65 0.6 
50 72.8 27.14 69.73 32.73 90.76 38.64 24.94 0.5333 
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September Cont. 

Percent      HR       TS   TSN   POD   PODN    FAR   FARN      Bias 
51 72.05 24.75 69.21 29.7 91.03 40.24 25.72 0.497 
52 72.05 22.8 69.53 26.67 92.39 38.89 26.25 0.4364 
53 71.11 20.21 68.83 23.64 92.39 41.79 27.04 0.4061 
54 71.86 19.79 69.76 22.42 94.02 37.29 27 0.3576 
55 71.48 17.84   69.6 20 94.57 37.74 27.5 0.3212 
56 71.67 17.03 69.92 18.79 95.38 35.42 27.63 0.2909 
57 71.11 15.38 69.51 16.97 95.38 37.78 28.07 0.2727 
58 70.92 14.36 69.43 15.76 95.65 38.1 28.31 0.2545 
59 71.29 13.56 69.94 14.55 96.74 33.33 28.37 0.2182 
60 71.48 12.64 70.25 13.33 97.55 29.03 28.49 0.1879 
61 70.54 9.77 69.57 10.3 97.55 34.62 29.19 0.1576 
62 70.36 8.67 69.05 9.09 97.83 34.78 29.41 0.1394 
63 69.98 7.51 69.23 7.88 97.83 38.1 29.69 0.1273 
64 69.42 5.23 68.89 5.45 98.1 43.75 30.17 0.0967 
65 69.42 4.12 69.01 4.24 98.64 41.67 30.33 0.0727 
66 69.42 3.55 69.07 3.64 98.91 40 30.4 0.0606 
67 69.23 2.38      69 2.42 99.18 42.86 30.61 0.0424 
68 69.61 2.41 69.38 2.42 99.73 20 30.49 0.0303 
69 69.61 2.41 69.38 2.42 99.73 20 30.49 0.0303 
70 69.61 2.41 69.38 2.42 99.73 20 30.49 0.0303 
71 69.42 1.81 69.25 1.82 99.73 25 30.62 0.0242 
72 69.23 1.2 69.11 1.21 99.73 33.33 30.75 0.0182 
73 69.04 0.6 68.99 0.61 99.73 50 30.89 0.0121 
74 69.04 0.6 68.99 0.61 99.73 50 30.89 0.0121 
75 69.04 0.6 68.99 0.61 99.73 50 30.89 0.0121 

These tables represent the NPTI statistics for each threshold percentile. They are 
divided by month to correspond to figures 5-16. These tables will allow any percentile 
to be chosen as the threshold and view the statistics calculated for that percentile. This is 
a summation of the climatological data sets statistics. 
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Appendix G. Example Output from the NPTI Code 

Output from the NPTI code in the ten-by-ten matrix around Cape Canaveral. The 
probability calculated from each part of the NPTI is shown as well as the total 
thunderstorm probability forecast. This example is for the 28th of August, 1997. 

August 28, 1997 

Probability from 850-mb winds 
37 36 33 30 28 27 26 25 24 24 
35 34 32 30 29 27 26 24 24 23 
32 32 32 31 30 28 26 24 23 23 
31 31 31 30 29 27 26 25 24 23 
29 30 29 29 28 27 26 25 24 24 
28 29 28 28 27 27 26 25 25 25 
28 29 29 28 27 26 26 25 25 26 
28 29 30 28 26 26 25 25 25 26 
27 29 30 28 26 26 26 25 25 25 
27 28 29 28 27 26 25 25 24 25 

Probability from 500-mb winds 
40 41 43 45 47 49 52 55 57 59 
40 42 44 46 48 50 53 55 58 60 
42 43 45 47 49 51 54 57 59 61 
43 45 47 49 51 53 55 57 60 62 
45 46 48 51 53 55 57 58 60 63 
46 48 50 52 54 56 58 59 61 63 
48 49 51 53 55 57 59 60 61 63 
50 51 53 55 56 58 59 60 62 63 
52 53 55 56 57 58 59 60 61 62 
54 55 56 57 57 58 59 59 60 62 

Probab ility from relative humidity 
9 9 10 10 9 8 8 8 8 9 
8 7 6 5 4 4 4 4 4 5 
5 4 3 3 3 3 3 3 3 3 
3 3 3 3 3 3 3 4 5 5 
3 3 3 3 3' 3 3 4 6 8 
4 3 3 3 3 3 3 3 5 9 
6 4 4 3 3 3 3 3 4 8 
9 7 5 4 3 3 3 3 4 6 

12 11 8 6 5 4 4 4 4 5 
18 17 14 11 9 8 6 5 5 5 
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Probability from Showalter Stability Index 
30 28 27 23 20 19 19 18 19 19 
27 26 25 23 21 20 19 18 17 17 
27 26 26 25 24 23 21 21 21 21 
28 28 27 27 26 25 24 23 24 26 
30 29 30 30 29 26 25 24 25 26 
29 30 31 31 29 26 24 23 24 26 
29 30 31 32 30 26 22 21 24 26 
28 29 31 32 30 24 22 20 22 25 
28 28 30 30 28 23 21 20 21 23 
30 29 29 28 26 24 23 22 22 23 

Probability from climatology 
34 34 34 34 34 34 34 34 34 34 
34 34 34 34 34 34 34 34 34 34 
34 34 34 34 34 34 34 34 34 34 
34 34 34 34 34 34 34 34 34 34 
34 34 34 34 34 34 34 34 34 34 
34 34 34 34 34 34 34 34 34 34 
34 34 34 34 34 34 34 34 34 34 
34 34 34 34 34 34 34 34 34 34 
34 34 34 34 34 34 34 34 34 34 
34 34 34 34 34 34 34 34 34 34 

Total NPTI Probability 
16 15 14 10 8 7 7 8 8 9 
13 12 11 9 8 6 6 6 6 7 
11 11 11 10 10 9 8 7 8 9 
11 11 12 12 11 10 10 10 11 13 
11 12 13 13 13 11 11 11 13 15 
11 12 13 14 13 12 11 11 13 16 
12 13 15 14 13 11 10 10 12 16 
14 14 16 16 14 11 10 10 11 14 
15 16 17 16 14 11 10 9 10 13 
19 20 19 18 15 13 12 10 11 12 

KTTS Probability = 12.25 

170 



Bibliography 

Bauman, William H., M. L. Kaplan, and S. Businger, 1997: Nowcasting Convective 
Activity for Space Shuttle Landings during Easterly Flow Regimes. Wea. 
Forecasting, 12, 78-107. 

Black, T. L., 1994: The New NMC Mesoscale Eta Model: Description and Forecast 
Examples. Wea. Forecasting, 9, 265-278. 

Bluestein, H. B., 1993: Synoptic-Dynamic Meteorology in Midlatitudes, Volume II: 
Observations and Theory of Weather Systems. Oxford University Press, Inc., 

426-579. 

Byers, H. R., and H. R. Rodebush, 1948: Causes of Thunderstorms of the Florida 
Peninsula. J. Meteor., 5, 275-280. 

Cetola, J. D., 1997: A Climatology of the Sea Breeze at Cape Canaveral, Florida. 
Masters Thesis, Florida State University, 56 pp. 

Dey, Clifford H., 1996: National Centers For Environmental Prediction Office Note 388, 
GRIB (edition I): The WMO Format For The Storage Of Weather Product 
Information And The Exchange Of Weather Product Messages In Gridded 
Bianary Form. NCEP Central Operations, 100 pp. 

Duffield, George F., and G. D. Nastrom, 1983: AWS/TR-83/001, Equations and 
Algorithms for Meteorological Applications in Air Weather Service. Air Weather 
Service, 58 pp. 

Everitt, B. S., 1992: The Analysis of Contingency Tables. 2nd ed., Chapman & Hall, 
164 pp. 

Haitiner, G. J., and R. T. Williams, 1980: Numerical Prediction and Dynamic 
Meteorology. 2nd ed., John Wiley & Sons, 477 pp. 

Montz, John M., and R. C. Sloane, 1943: Elements of Topographic Drawing. McGraw- 
Hill Co., Inc., 250 pp. 

NASA Contract Report. CR-205409, 1997: Evaluation of the 29-km Eta Model for 
Weather Support to the United States Space Program. Applied Meteorology 
Unit, 91 pp. 

171 



Neumann, C. J., 1968: Weather Bureau Technical Memorandum SOS-2, Frequency and 
Duration of Thunderstorms at Cape Kennedy, Part I. Spaceflight Meteorology 
Group, 26 pp. 

Neumann, C. J., 1970: ESSA Technical Memorandum WBTM SOS-6, Frequency and 
Duration of Thunderstorms at Cape Kennedy, Part II (Application to 
Forecasting). Spaceflight Meteorology Group, 32 pp. 

Neumann, C. J., 1971: NOAA Technical Memorandum NWS SOS-8, Thunderstorm 
Forecasting at Cape Kennedy, Florida, Utilizing Multiple Regression Techniques. 
Spaceflight Meteorology Group, 45 pp. 

Pielke, Roger A., 1974: A Three-Dimensional Numerical Model of the Sea Breeze Over 
South Florida. Mon. Wea. Rev., 102,115-139. 

Roeder, W. P., F. J. Merceret, S. J. Sokol, S. T. Heckman, and G. E. Taylor, 1997: 
Operational Meteorological Research Requirements on the Central Florida 
Atlantic Coast in Support of the United States Space Program. 45th Weather 
Squadron, Patrick AFB, FL, 9 pp. 

Staudenmaier, Mike, Jr., 1996: Western Region Technical Attachment No.96-06, A 
Description of the Meso Eta Model. NWSO-Sacramento, 4 pp. , 

 1996: Western Region Technical Attachment No. 96-30, The Initialization 
Procedure in the Meso Eta Model. WRH-SSD/NWSFO-Salt Lake City, 5 pp. 

Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 
233-283. 

172 



Vita 

Christian S. Wohlwend was born on 02 December 1973 in Carmichael, 

California, but he was raised in the small foothill town of El Dorado, California. He 

entered the Air Force on 29 June 1992, when he arrived at the United States Air Force 

Academy. He was commissioned through that institution on 29 May 1996, and graduated 

with a degree in Applied Physics. This degree had a specialization in space and 

atmospheric physics. This enabled Lieutenant Wohlwend to be posted as a weather 

officer. His first official assignment was to the Air Force Institute of Technology (AFIT) 

as a masters student in Meteorology. Following the completion of his AFIT tour, he will 

be assigned to the 88th Weather Squadron, Wright-Patterson AFB. His assignment will 

be as a Wing Weather Officer in the base weather station. 

Christian was just married to the former Second Lieutenant Kirsten M. Larson, of 

Jupiter, Florida. They were married on 31 May 1997 after her graduation from the 

United States Air Force Academy. They currently have no children. 

Permanent Address: 

5745 Quartz Drive 

El Dorado, CA 95623 

173 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing 
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information 
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

March 1998 

3. REPORT TYPE AND DATES COVERED 

Final 
4. TITLE AND SUBTITLE 

Improving Cape Canaveral's Day-2 Thunderstorm Forecasting Using Meso-Eta 
Numerical Model Output 

6. AUTHOR(S) 

Christian S. Wohlwend, 2LT USAF 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

AFIT/ENP 

2950 P. Street 
Wright-Patterson AFB, OH 45433 
Attn: LtCol Mike Walters    COMM:  (937) 255-3636 x4681 DSN: 785-3636 

mwalters@afit. af. mil 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

AFIT/GM/ENP/98M-12 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

45 WS/SYR 
1201 Minuteman Street 

Patrick AFB, FL 32925-3238 
Attn: Mr. William Roeder COMM: (407) 853-8410 DSN: 467-8410 

william-roeder(S>pafb. af. mil  

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited 
12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

The 45th Weather Squadron (WS) is responsible for the protection of billions of dollars worth of Air Force and 
NASA equipment from weather hazards. They produce a seven day planning forecast as one tool to support the space launch 
community. Improving this forecast can potentially save millions of dollars of government funds. 

This research focuses on the feasibility of improving the day-two thunderstorm forecast by applying Meso-Eta 
numerical forecasts to the Neumann-Pfeffer Thunderstorm Index (NPTI). The NPTI is currently used by the 45th WS for 
same-day thunderstorm probability forecasting utilizing the morning radiosonde as input. The perfect prognosis assumption 
was used when assessing the value of this technique. 
NPTI thunderstorm probabilities were calculated using input variables extracted from the day-two Meso-Eta . The NPTI 
output was verified against coincident thunderstorm observations taken at Cape Canaveral Air Station. Accuracy and bias 
statistics were used to calculate a forecasting skill score versus persistence.  Statistically significant positive skill scores were 
produced, indicating that the proposed method is a potentially useful forecasting tool for day-two thunderstorm probability 
forecasting. A test of NPTI over 20 years of climatology revealed a moderately accurate forecasting method. 

14. SUBJECT TERMS 

Meteorology, Numerical Weather Prediction, Meso-Eta Numerical Model, Thunderstorm 
Forecasting 

15. NUMBER OF PAGES 

188 
16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF 
ABSTRACT 

UL 
Standard Form 298 (Rev. 2-89) (EG) 
Prescribed by ANSI Std. 239.18 
Designed using Perform Pro, WHS/DIOR, Oct 94 


